Automatic Verification of non-silent Population Protocols
Master’s Thesis

Martin Helfrich

Technical University of Munich

September 2019
Population Protocols

Model of distributed computation
→ to study systems of identical and anonymous agents:
 - identical
 - anonymous
 - passively mobile
 - tiny computational resources
(e.g. sensor networks or chemical systems)
Population Protocols
Example

Flock of Birds:

Question: \(\geq 4 \)
Goal: Lasting Consensus
Population Protocols

Definition (Population Protocol)

A *population protocol* is a tuple $\mathcal{P} = (Q, T, \Sigma, I, O)$ such that

- Q is a finite set of *states*,
- $T \subseteq \bigcup_{2 \leq i \leq |Q|} Q^i \times Q^i$ is a set of *transitions*,
- Σ is a non-empty finite input *alphabet*,
- $I : \Sigma \rightarrow Q$ is the *input function* and
- $O : Q \rightarrow \{0, 1\}$ is the *output function*.

Definition (Configuration)

A *configuration* of population protocol $\mathcal{P} = (Q, T, \Sigma, I, O)$ is a multiset $C \in \mathbb{N}^Q$ where $C(q)$ describes the number of agents in state $q \in Q$.

The *output* of configuration C is

$$O(C) = \begin{cases}
 b \in \{0, 1\} & \text{if for all states } C(q) > 0 \Rightarrow O(q) = b \\
 \bot & \text{otherwise}
\end{cases}$$
1. **input:**
 \[x \in \mathbb{N}^\Sigma \]
 \[\downarrow \text{input function } I \]

2. **initial configuration:**
 \[C_0 \]
 \[\downarrow \text{transitions } \mathcal{T} \]

3. **fair\(^1\) execution:**
 \[\sigma \overset{\text{def}}{=} C_0 \xrightarrow{t_1} C_1 \xrightarrow{t_2} C_2 \rightarrow \cdots \]

\(P\) computes the predicate \(\varphi : \mathbb{N}^\Sigma \rightarrow \{0, 1\}\), if for all inputs \(x \in \mathbb{N}^\Sigma\) and corresponding fair executions \(C_0 \xrightarrow{t_1} C_1 \xrightarrow{t_2} C_2 \rightarrow \cdots\) we reach the correct **lasting consensus**:

\[\exists i \in \mathbb{N} : \varphi(x) = \mathcal{O}(C_i) = \mathcal{O}(C_{i+1}) = \cdots \]

\(^1\)A fair execution cannot avoid configurations forever.
Population Protocols
Example

Flock of Birds:

\[Q \overset{\text{def}}{=} \{0, 1, 2, 3, 4\} \]
\[T \overset{\text{def}}{=} \{p, q \rightarrow \min(p+q, 4), 0 \mid p, q \in Q\} \]
\[T = T \cup \{p, 4 \rightarrow 4, 4 \mid p \in Q\} \]
\[\Sigma \overset{\text{def}}{=} \{\text{sick, healthy}\} \]
\[I(x) \overset{\text{def}}{=} \begin{cases} 1 & \text{if } x = \text{sick} \\ 0 & \text{if } x = \text{healthy} \end{cases} \]
\[O(q) \overset{\text{def}}{=} \begin{cases} 1 & \text{if } q = 4 \\ 0 & \text{otherwise} \end{cases} \]

Question: \(\text{\# sick birds} \geq 4 \)
Population Protocols
Correctness Problem

Question:
Is a given protocol correct?
→ TOWER-hard [1] [2]

Goal: Automatic Verification
→ need lower complexity!
→ Blondin et al. [3]:
 (incomplete) approach for silent protocols
→ Peregrine

Definition (Silent Population Protocol)
A population protocol is silent if for every fair execution $C_0 \rightarrow C_1 \rightarrow \cdots$ there is a $i \in \mathbb{N}$ such that:

$$C_i = C_{i+1} = C_{i+2} = \cdots$$
Automatic Verification of non-silent Population Protocols

Termination Behaviour

silent protocols
→ reach terminal configuration
→ all transitions disabled
→ easy description / test

vs

non-silent protocols
→ reach lasting consensus
BUT: How to describe "lasting"?
→ harder!

Idea: Group configurations into (infinite) sets
→ Describe all fair executions at once!
Directed Acyclic Graph (DAG) of stages such that:

1. Stages are inductive sets of configurations. *i.e. "can't leave"
2. Initial configurations are part of some stage.
3. Non-terminal stage: Executions will enter substage.
4. Terminal stage: correct consensus
Stage Graphs

Stage graphs are certificates for properties of the form:

$$\varphi_{pre} \Rightarrow FG \varphi_{post}$$

"If you start in a configuration that satisfies φ_{pre}, then you will eventually satisfy φ_{post} forever."

Theorem

Let Λ be a predicate. For $b \in \{0, 1\}$ let

$$\varphi_{init,b}(C) \overset{\text{def}}{=} \exists X \in \mathbb{N}^\Sigma : (\Lambda(X) = b) \land (I(X) = C)$$

$$\varphi_{out,b}(C) \overset{\text{def}}{=} (O(C) = b).$$

A population protocol \mathcal{P} has a $(\varphi_{init,0}, \varphi_{out,0})$-stage-graph and a $(\varphi_{init,1}, \varphi_{out,1})$-stage-graph if and only if it computes the predicate Λ.

\Rightarrow sound and complete
Proof.

"⇒":
1. Executions can’t leave stages.
2. All executions start some stage.
3. Non-terminal & Fairness ⇒ "enter" substage
4. Terminal ⇒ correct consensus

"⇐": As protocol computes Λ, there are the needed stage graphs, each with 2 stages:
- Initial stage: all reachable configurations
- Terminal stage: all configurations with the correct lasting consensus
Idea: Protocols designed to work in stages → correspond to non-reversible change in configuration:

- "death" of a transition
 Example: t and u are dead
 i.e. "t and u can’t be enabled anymore."

- a state becomes "deserted"
 Example: q is deserted
 i.e. "q can’t be populated anymore."

→ automatically find such stages
Stage \(S = (T_{\text{dead}}, Q_{\text{deserted}}) \) where

- \(T_{\text{dead}} \subseteq T \) is the set of dead transitions.
- \(Q_{\text{deserted}} \subseteq Q \) is the set of deserted states.

Configuration \(C \) is in stage \(S \) if

1. there is a configuration \(C_0 \models \varphi_{\text{pre}} \) such that \(C_0 \xrightarrow{*} C \), and
2. \(T_{\text{dead}} \) are dead, and
3. \(Q_{\text{deserted}} \) are deserted.
Computing Stage Graphs

Algorithm

\begin{algorithm}
\begin{algorithmic}
\State \textbf{input}: protocol \(\mathcal{P} = (Q, T, \Sigma, I, O) \)
\State Presburger predicate \(\varphi_{\text{pre}} \)
\State Presburger predicate \(\varphi_{\text{post}} \)
\State \(S_0 := (\emptyset, \emptyset) \)
\State \textbf{Unprocessed} := \{S_0\}
\While{\text{\textbf{|Unprocessed|} > 0}}
\State \(S := \text{\textbf{Unprocessed}}.\text{pop}() \)
\If{\text{Substages}(\mathcal{P}, \varphi_{\text{pre}}, \varphi_{\text{post}}, S) \text{ \textbf{fails}}}
\State then \text{\textbf{abort}}
\Else\quad \textbf{Unprocessed} := \text{\textbf{Unprocessed}} \cup \text{Substages}(\mathcal{P}, \varphi_{\text{pre}}, \varphi_{\text{post}}, S)\end{algorithmic}
\end{algorithm}
Computing Stage Graphs
Algorithm: Find new substages

input: protocol \(P = (Q, \mathcal{T}, \Sigma, \mathcal{I}, \mathcal{O}) \)

Presburger predicate \(\varphi_{pre} \)

Presburger predicate \(\varphi_{post} \)

stage \(S = (T_{\text{dead}}, Q_{\text{deserted}}) \)

if Terminal\((P, \varphi_{pre}, S, \varphi_{post})\)
return \(\emptyset \)

\(T'_{\text{dead}} := \text{EventuallyDead}(P, \varphi_{pre}, S) \)

if \(T'_{\text{dead}} \supset T_{\text{dead}} \)
return \(\{(T'_{\text{dead}}, Q_{\text{deserted}})\} \)

if Split\((P, \varphi_{pre}, S)\) **fails**
then abort
else return Split\((P, \varphi_{pre}, S)\)

Parametric in 3 auxiliary functions

Terminal:
Try to prove: \(S \) is terminal

EventuallyDead:
Find "eventually dead" transitions

Split:
Split \(S \) in substages with more deserted states.
Need to decide: $C \in S$.

Problem: "reachable", "dead" and "deserted" are non-trivial

Idea: Overapproximate!

1. "reachable": use potential reachability [3]
 - flow equation & siphons & traps
2. "dead": use "disabled"\(^2\)
3. "deserted": use "empty"

Implementation: Use Z3 to check

$$\forall C : C \models \neg \text{PotInStage}(P, \varphi_{pre}, S) \lor \varphi_{post}$$

\(^2\)We also use tighter approximations using the backwards coverability algorithm.
Goal: Find transitions that will eventually become dead from every configuration $C \in S$.

Implementations:

- **Ranking function:**
 \rightarrow imply eventual death of some transition

- **Layered termination:** [3]
 find "layer" $L \subseteq \mathcal{T}$ and ranking function such that
 - L will eventually be disabled, and
 - $\text{Disabled}(L) \Rightarrow \text{Dead}(L)$

- **Combined:**
 use ranking functions and layered termination
Computing Stage Graphs

Split

Goal: Split stage into substages with more deserted states. (i.e. "case distinction")

Idea: empty siphon \Rightarrow deserted

\Rightarrow find set of siphons R such that

$$\forall C : C \models \neg \text{PotInStage}(P, \varphi_{pre}, S) \lor \bigvee_{R_i \in R} \text{empty}(R_i)$$

Implementation: Guess siphons using Z3.
Computing Stage Graphs

Example

Majority Protocol

```
“A ≤ B”
```

- \(t_{AB} : AB \rightarrow ab \)
- \(t_{Ab} : Ab \rightarrow Aa \)
- \(t_{Ba} : Ba \rightarrow Bb \)
- \(t_{ab} : ab \rightarrow bb \)

Consensus

- \(\Rightarrow \text{Consensus true} \)
- \(\Rightarrow \text{Consensus false} \)
Computing Stage Graphs
Results

<table>
<thead>
<tr>
<th>protocol</th>
<th>predicate</th>
<th>silent</th>
<th></th>
<th>Q</th>
<th></th>
<th></th>
<th>T</th>
<th></th>
<th>proven</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Majority</td>
<td>(A \leq B)</td>
<td>yes</td>
<td>4</td>
<td>4</td>
<td>yes</td>
<td>< 1s</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A&C(11,9)</td>
<td>(A \leq B)</td>
<td>no</td>
<td>28</td>
<td>406</td>
<td>yes</td>
<td>700s</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flock-of-Birds</td>
<td>(X \geq 60)</td>
<td>yes</td>
<td>61</td>
<td>1891</td>
<td>yes</td>
<td>328s</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>succinct FoB.</td>
<td>(X \geq 2^{35} - 1)</td>
<td>yes</td>
<td>70</td>
<td>1294</td>
<td>yes</td>
<td>334s</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>suc. rev. FoB.</td>
<td>(X \geq 63)</td>
<td>no</td>
<td>12</td>
<td>31</td>
<td>yes</td>
<td>40s</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Remainder</td>
<td>(\sum_{1 \leq i < 20} i \cdot x_i \equiv 0 \mod 20)</td>
<td>yes</td>
<td>22</td>
<td>250</td>
<td>yes</td>
<td>565s</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>succinct Rem.</td>
<td>(\sum_{1 \leq i < 63} i \cdot x_i \equiv 0 \mod 63)</td>
<td>no</td>
<td>16</td>
<td>41</td>
<td>yes</td>
<td>75s</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Threshold</td>
<td>(-2a - b + c + 2d < 3)</td>
<td>yes</td>
<td>36</td>
<td>495</td>
<td>yes</td>
<td>32s</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>succinct Thr.</td>
<td>(-2a - b + c + 2d < 63)</td>
<td>yes</td>
<td>20</td>
<td>66</td>
<td>yes</td>
<td>100s</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table: Automatic verification of silent and non-silent protocols using stage graphs.
We can even verify leader election! (i.e. via postcondition)

| protocol | n | silent | |Q| | |T| | proven | time |
|---------------------|------|--------|-----|----|------|--------|---------|
| simple | ∞ | yes | 2 | 1 | yes | < 1s |
| Israeli-Jalfon | 70 | no | 140 | 280| yes | 2537s |
| Herman | 91 | no | 182 | 182| no | 203s |
| Herman modified | 91 | no | 182 | 182| yes | 2785s |

Table: Automatic verification of leader election protocols for n agents.
Important questions in practise:

- Correctness: ✓
- Fast: ?

But what does "fast" mean?
→ expected number of interactions
→ probabilistic model
 (i.e. "random" instead of fairness)

Apply idea of Blondin et al. [4]!
Let $n = |C_0|$.

- **Terminal:** $O(1)$
- **Split:** $O(1)$
- **EventuallyDead:**
 - layered: $O(n^n)$
 - ranking: $O(n^c)$ for some constant c
 - layered + ranking: $O(n^3)$
 - layered + ranking + "fast": $O(n^2 \log n)$
Termination Time

Example

Majority Protocol

“\(A \leq B \)”

\(t_{AB} : AB \rightarrow ab \)
\(t_{Ab} : Ab \rightarrow Aa \)
\(t_{Ba} : Ba \rightarrow Bb \)
\(t_{ab} : ab \rightarrow bb \)

\(S_1 \)

Dead: \{ \(t_{AB} \) \}
Deserted: \{ \(B \) \}

\(S_2 \)

Dead: \{ \(t_{AB}, t_{Ab} \) \}
Deserted: \{ \(A \) \}

\(S_3 \)

Dead: \(T \)
Deserted: \{ \(A \), \(A \) \}

\(S_4 \)

Dead: \(T \)
Deserted: \{ \(A \), \(a \) \}

\(S_5 \)

Dead: \{ \(t_{AB}, t_{Ba} \) \}
Deserted: \{ \(B \) \}

\(S_6 \)

Dead: \{ \(t_{AB}, t_{Ba}, t_{Ab} \) \}
Deserted: \{ \(B \) \}

\(S_7 \)

Dead: \(T \)
Deserted: \{ \(B \) \}

\(S_8 \)

Dead: \{ \(B, A, a \) \}
Deserted: \{ \(B, A, a \) \}

\(\Rightarrow \) Consensus \(true \)

\(S_9 \)

Dead: \{ \(B, b \) \}
Deserted: \{ \(B, b \) \}

\(\Rightarrow \) Consensus \(false \)
Termination Time

Results

| protocol | $|Q|$ | $|T|$ | bound | time |
|-----------------------------|-----|-----|---------|--------|
| Majority | 4 | 4 | $O(n^n)$ | < 1s |
| simple leader election | 2 | 1 | $O(n^2 \log n)$ | < 1s |
| Flock-of-Birds (45) | 46 | 2026| $O(n^3)$ | 307s |
| succinct FoB (511) | 18 | 97 | $O(n^3)$ | 2.5s |
| suc. rev. FoB (63) | 12 | 31 | $O(n^c)$ | 307s |
| Remainder ($\equiv 4$) | 6 | 18 | $O(n^2 \log n)$ | 2.8s |
| Threshold (< 2) | 28 | 301 | $O(n^3)$ | 62s |
| A&C (7,1) | 10 | 55 | $O(n^2 \log n)$ | 8.3s |
| A&C (11,10) | 32 | 528 | $O(n^3)$ | 550s |

Table: Automatically found and proven speed bounds.
Question: Can we verify liveness?
E.g. will process 1 enter its critical section infinitely often?

Answer: No!
→ property does not have form $\varphi_{pre} \Rightarrow FG \varphi_{post}$
Overview

- \(\phi \) is a liveness property (LTL)
- \(GF(\text{enter}_1) \)
- \(FG(\neg \text{enter}_1) \)

Transform:
\[
\neg \phi \\
\neg \neg \phi \\
\text{transform} \\
LDBA \ B \\
\times \\
\text{product} \\
\mathcal{P}' \\
\text{verify:} \\
B \text{ can’t accept} \\
\checkmark \\
\text{population protocol} \\
\mathcal{P} \\
\text{product protocol}
We can verify liveness of a single process in mutex algorithms!

<table>
<thead>
<tr>
<th>Mutex algorithm</th>
<th>processes</th>
<th>proven</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simple</td>
<td>400</td>
<td>yes</td>
<td>2049s</td>
</tr>
<tr>
<td>Array</td>
<td>11</td>
<td>yes</td>
<td>2284s</td>
</tr>
<tr>
<td>Burns</td>
<td>6</td>
<td>yes</td>
<td>1074s</td>
</tr>
<tr>
<td>Peterson</td>
<td>2</td>
<td>yes</td>
<td>< 1s</td>
</tr>
<tr>
<td>Dijkstra</td>
<td>4</td>
<td>yes</td>
<td>3221s</td>
</tr>
<tr>
<td>Szymanski</td>
<td>3</td>
<td>yes</td>
<td>38s</td>
</tr>
<tr>
<td>Lehmann Rabin</td>
<td>10</td>
<td>yes</td>
<td>3141s</td>
</tr>
</tbody>
</table>

Table: Automatic verification of liveness of a single process in mutex algorithms.
Future Work

Verify more expressive models?

- Petri nets with inhibitor arcs
- Population protocols with broadcast
- ...

→ automatically?

Other fairness assumptions?
References I

