Efficient Analysis of Population Protocols and Chemical Reaction Networks

Doctoral Defense

Martin Helfrich 💿

December 5, 2023

Introduction: Motivation

"Population protocols and chemical reaction networks are formal models in which many simple entities interact resulting in a hard to analyse system."

Introduction: Use Cases

Epidemiology

Sensor Networks

Robot Swarms

Social Networks

Drug Discovery

Self-Organizing Systems

Introduction: Thesis Overview

Goal of Thesis:

Enable efficient (or "practical") analysis of these models via:

- 1. Theoretical results
- 2. New efficient analysis methods
- 3. Easily accessible tools

Goal of Thesis:

Enable efficient (or "practical") analysis of these models via:

- 1. Theoretical results
- 2. New efficient analysis methods
- 3. Easily accessible tools

Results of Thesis:

- Efficient verification of population protocols
 → in this talk: focus on tool Peregrine
- Synthesis of efficient population protocols
 - \rightarrow not in this talk
- Efficient transient analysis of chemical reaction networks
 → in this talk: focus on segmental simulation idea

Population Protocols

- Anonymous mobile agents with very few resources
- Agents change states via random pairwise interactions

- Anonymous mobile agents with very few resources
- Agents change states via random pairwise interactions

- Anonymous mobile agents with very few resources
- Agents change states via random pairwise interactions
- Each agent has opinion true/false

- Anonymous mobile agents with very few resources
- Agents change states via random pairwise interactions
- Each agent has opinion true/false
- Computes by stabilizing agents to some opinion

- Anonymous mobile agents with very few resources
- Agents change states via random pairwise interactions
- Each agent has opinion true/false
- Computes by stabilizing agents to some opinion

- Anonymous mobile agents with very few resources
- Agents change states via random pairwise interactions
- Each agent has opinion true/false
- Computes by stabilizing agents to some opinion

- 4 states: blue/red, large/small
- Two large birds of different colors become small
- Large birds convert small birds to their color
- Small blue birds convert small red birds

- 4 states: blue/red, large/small
- Two large birds of different colors become small
- Large birds convert small birds to their color
- Small blue birds convert small red birds

- 4 states: blue/red, large/small
- Two large birds of different colors become small
- Large birds convert small birds to their color
- Small blue birds convert small red birds

- 4 states: blue/red, large/small
- Two large birds of different colors become small
- Large birds convert small birds to their color
- Small blue birds convert small red birds

- 4 states: blue/red, large/small
- Two large birds of different colors become small
- Large birds convert small birds to their color
- Small blue birds convert small red birds

- 4 states: blue/red, large/small
- Two large birds of different colors become small
- Large birds convert small birds to their color
- Small blue birds convert small red birds

- 4 states: blue/red, large/small
- Two large birds of different colors become small
- Large birds convert small birds to their color
- Small blue birds convert small red birds

- 4 states: blue/red, large/small
- Two large birds of different colors become small
- Large birds convert small birds to their color
- Small blue birds convert small red birds

- 4 states: blue/red, large/small
- Two large birds of different colors become small
- Large birds convert small birds to their color
- Small blue birds convert small red birds

- 4 states: blue/red, large/small
- Two large birds of different colors become small
- Large birds convert small birds to their color
- Small blue birds convert small red birds

- 4 states: blue/red, large/small
- Two large birds of different colors become small
- Large birds convert small birds to their color
- Small blue birds convert small red birds

- 4 states: blue/red, large/small
- Two large birds of different colors become small
- Large birds convert small birds to their color
- Small blue birds convert small red birds

Protocol:

- 4 states: blue/red, large/small
- Two large birds of different colors become small
- Large birds convert small birds to their color
- Small blue birds convert small red birds

Correctness properties:

$$\begin{pmatrix} \mathbf{\dot{\bullet}} \geq \mathbf{\dot{\bullet}} \end{pmatrix} \implies \mathbf{FG} \begin{pmatrix} \mathbf{\dot{\bullet}} + \mathbf{\dot{\bullet}} = 0 \end{pmatrix}$$
$$\begin{pmatrix} \mathbf{\dot{\bullet}} & \mathbf{\dot{\bullet}} \end{pmatrix} \implies \mathbf{FG} \begin{pmatrix} \mathbf{\dot{\bullet}} & \mathbf{\dot{\bullet}} = 0 \end{pmatrix}$$

"Birds converge to color of majority."

Observation:

Correctness proofs are typically structured in stages that trap the system in progressively more constrained subsets of configurations.

Observation:

Correctness proofs are typically structured in stages that trap the system in progressively more constrained subsets of configurations.

 \rightarrow **Idea:** Formalize structure as stage graph!

Population Protocols: Stage Graphs

Definition: Stage Graph

A stage graph for $\varphi_{\rm pre} \Rightarrow \textit{FG}\varphi_{\rm post}$ is a finite DAG satisfying:

1. Each node is an inductive set of configurations, called stage.

```
"It is impossible to leave stages."
```


Population Protocols: Stage Graphs

Definition: Stage Graph

A stage graph for $\varphi_{\rm pre} \Rightarrow \textit{FG}\varphi_{\rm post}$ is a finite DAG satisfying:

1. Each node is an inductive set of configurations, called stage.

"It is impossible to leave stages."

2. Every configuration that satisfies $\varphi_{\rm pre}$ is in some stage.

"The system starts in a stage."

Example:

Population Protocols: Stage Graphs

Definition: Stage Graph

A stage graph for $\varphi_{\rm pre} \Rightarrow \textit{FG}\varphi_{\rm post}$ is a finite DAG satisfying:

 $1. \ \mbox{Each}$ node is an inductive set of configurations, called stage.

"It is impossible to leave stages."

2. Every configuration that satisfies $\varphi_{\rm pre}$ is in some stage.

"The system starts in a stage."

3. In stages with successors, executions enters a successor with prob. 1. "Stages lead to their successors."

Example:

Population Protocols: Stage Graphs

Definition: Stage Graph

A stage graph for $\varphi_{\rm pre} \Rightarrow \textit{FG}\varphi_{\rm post}$ is a finite DAG satisfying:

1. Each node is an inductive set of configurations, called stage.

"It is impossible to leave stages."

2. Every configuration that satisfies $\varphi_{\rm pre}$ is in some stage.

"The system starts in a stage."

- 3. In stages with successors, executions enters a successor with prob. 1. "Stages lead to their successors."
- 4. In stages without successors, all configurations satisfy $\varphi_{\rm post}$. "Finally, the postcondition holds forever."

Example:

Theory

A population protocol is correct if and only if there is a stage graph proving it.

Def: Presburger Stage Graph

A stage graph that is described using only Presburger formulas.

Theory

A population protocol is correct if and only if there is a Presburger stage graph proving it.

Def: Presburger Stage Graph

A stage graph that is described using only Presburger formulas.

Theory

A population protocol is correct if and only if there is a Presburger stage graph proving it.

 \rightarrow Decidable $\underline{\textbf{but}}$ stage graphs can be huge!

Def: Presburger Stage Graph

A stage graph that is described using only Presburger formulas.

Theory

A population protocol is correct if and only if there is a Presburger stage graph proving it.

 \rightarrow Decidable $\underline{\textbf{but}}$ stage graphs can be huge!

Practice

- Most systems have small stage graphs
- Most systems make progress by "killing" transitions

 \rightarrow Use heuristics to efficiently construct Presburger stage graphs

Population Protocols: Utility of Stage Graphs

Stage graphs:

- Can be efficiently constructed for most protocols
- Certify liveness properties
- Are independently checkable
- Explain how the protocol works
- Give speed guarantees
- Help to find counter examples

Chemical Reaction Networks

Example: Viral Infection

Species:	RNA, DNA, V, P	
Initial state:	$(1 \times RNA)$	
End time:	200s	
Reactions:	$DNA + P \xrightarrow{0.00001} V$	$RNA \xrightarrow{0.25} \emptyset$
	$RNA \xrightarrow{1000} RNA + P$	$P \xrightarrow{2} \emptyset$
	$DNA \xrightarrow{0.025} DNA + RNA$	
	$RNA \xrightarrow{1} DNA + RNA$	

Examp	le: \	/iral	nfection

Species:	RNA, DNA, V, P	
Initial state:	$(1 \times RNA)$	
End time:	200s	
Reactions:	$DNA + P \xrightarrow{0.00001} V$	$RNA \xrightarrow{0.25} \emptyset$
	$RNA \xrightarrow{1000} RNA + P$	$P\xrightarrow{2} \emptyset$
	$DNA \xrightarrow{0.025} DNA + RNA$	
	$RNA \xrightarrow{1} DNA + RNA$	

Similar to population protocols but:

• Variable number of molecules

Examp	le: \	/iral	nfection

Species:	RNA, DNA, V, P	
Initial state:	$(1 \times RNA)$	
End time:	200s	
Reactions:	$DNA + P \xrightarrow{0.00001} V$	$RNA \xrightarrow{0.25} \emptyset$
	$RNA \xrightarrow{1000} RNA + P$	$P \xrightarrow{2} \emptyset$
	$DNA \xrightarrow{0.025} DNA + RNA$	
	$RNA \xrightarrow{1} DNA + RNA$	

Similar to population protocols but:

- Variable number of molecules
- Continuous time (,i.e., behaves like CTMC not DTMC)

Example: \	Viral	Infection
------------	-------	-----------

Species:	RNA, DNA, V, P	
Initial state:	$(1 \times RNA)$	
End time:	200s	
Reactions:	$DNA + P \xrightarrow{0.00001} V$	$RNA \xrightarrow{0.25} \emptyset$
	$RNA \xrightarrow{1000} RNA + P$	$P \xrightarrow{2} \emptyset$
	$DNA \xrightarrow{0.025} DNA + RNA$	
	$RNA \xrightarrow{1} DNA + RNA$	

Similar to population protocols but:

- Variable number of molecules
- Continuous time (,i.e., behaves like CTMC not DTMC)
- Focus on modeling systems (instead of designing them)

CRN: Transient Analysis

How does the system evolve?

How does the system evolve?

Transient analysis:

- Hard because of complex dynamics, state-space explosion, stochasticity, stiffness, multimodality, ...
- Two approaches:
 - Direct (numerical)
 - Indirect (using many trajectories)

How does the system evolve?

Transient analysis:

- Hard because of complex dynamics, state-space explosion, stochasticity, stiffness, multimodality, ...
- Two approaches:
 - Direct (numerical)
 - Indirect (using many trajectories)

This work

- Goal: Efficiently compute many simulations
- Idea: Use memoization!

Gillespie's stochastic simulation algorithm (SSA) [9]

• Sample one reaction at a time

Gillespie's stochastic simulation algorithm (SSA) [9]

• Sample one reaction at a time

$$t = 0s$$
 •
 s_{init}

Start in initial state.

Gillespie's stochastic simulation algorithm (SSA) [9]

• Sample one reaction at a time

Compute rate of all reactions.

Gillespie's stochastic simulation algorithm (SSA) [9]

• Sample one reaction at a time

Time until the next reaction: $\Delta t \sim EXP(0.5+2+1.5)$ Probability of reactions: $\frac{0.5}{4}, \frac{2}{4}, \frac{1.5}{4}$

Gillespie's stochastic simulation algorithm (SSA) [9]

• Sample one reaction at a time

$$t = 0.18s$$
 ••••••
 s_{init}

Apply change to both time and state, then repeat.

Gillespie's stochastic simulation algorithm (SSA) [9]

• Sample one reaction at a time

Time until the next reaction: $\Delta t \sim EXP(1+2+2)$ Probability of reactions: $\frac{1}{5}, \frac{2}{5}, \frac{2}{5}$

Gillespie's stochastic simulation algorithm (SSA) [9]

• Sample one reaction at a time

Time until the next reaction: $\Delta t \sim EXP(4+2+3+1)$ Probability of reactions: $\frac{4}{10}, \frac{2}{10}, \frac{3}{10}, \frac{1}{10}$

Gillespie's stochastic simulation algorithm (SSA) [9]

- Sample one reaction at a time
- May take a long time

Precompute k short trajectories (called segments) for each state. \rightarrow Simulate by sampling segments instead of single reactions.

• much faster!

- much faster!
- Problem: many states \rightarrow too inefficient

• Idea: Do not treat every state separately!

- Idea: Do not treat every state separately!
- States with similar species counts have similar propensities \rightarrow their behave similarly

- Idea: Do not treat every state separately!
- States with similar species counts have similar propensities \rightarrow their behave similarly
- Population-level abstraction: split state-space into regions (called abstract states)

- Idea: Do not treat every state separately!
- States with similar species counts have similar propensities \rightarrow their behave similarly
- Population-level abstraction: split state-space into regions (called abstract states)

• Choose representative for each abstract state (usually center)

- Idea: Do not treat every state separately!
- States with similar species counts have similar propensities \rightarrow their behave similarly
- Population-level abstraction: split state-space into regions (called abstract states)

• Choose representative for each abstract state (usually center)

Only precompute k segments for each representative.

Segments end when they leave the abstract state.

```
\rightarrow Intuition: "significant change"
```

Only precompute k segments for each representative.

Only precompute k segments for each representative.

To save memory: Work with summaries instead of segments.

Only precompute k segments for each representative.

Lazy: Do not precompute but fill memory on-the-fly!

Only precompute k segments for each representative.

Lazy: Do not precompute but fill memory on-the-fly!

Lazy: Do not precompute but fill memory on-the-fly!

CRN: Conclusion

Segmental simulation:

- Reuses previous simulations to generate new ones
- Is an approximate simulation technique
- Accurately captures dynamics of most systems
- Speeds up transient analysis (up to 4000x faster)
- Efficiently predict the behavior of CRNs

Try it in SAQuaiA!

Thank you

THANK YOU!

First Author:

- Checking Qualitative Liveness Properties of Replicated Systems with Stochastic Scheduling (CAV'20) [3]
- Peregrine 2.0: Explaining Correctness of Population Protocols Through Stage Graphs (ATVA'20) [8]
- Abstraction-Based Segmental Simulation of Chemical Reaction Networks (CMSB'22) [10]

Non-first Author:

- Succinct Population Protocols for Presburger Arithmetic (STACS'20) [2]
- Fast and Succinct Population Protocols for Presburger Arithmetic (SAND'22) [5]

Others (not part of thesis):

- Automata Tutor v3 (CAV20) [7]
- Decision Power of Weak Asynchronous Models of Distributed Computing (PODC'21) [4]
- Fast and succinct population protocols for Presburger arithmetic (Journal of Comp. and Sys. Sciences 2023) [6]

Our result

For every quantifier-free Presburger formula φ there is an population protocol which

- has $\mathcal{O}(\text{POLY}(|\varphi|))$ states, \rightarrow succinct
- for *n* agents stabilizes in $\mathcal{O}(n^2 \log n)$ expected interactions, and $\rightarrow f_{\mathsf{ASL}}$
- can be constructed efficiently.

Population Protocol: Synthesis (Fast)

(by Angluin et al. [1])

ldea:

- Binary value representation (instead of unary)
- Agents participate in computation of only one atomic formula (instead of in all)

Population Computer

Like population protocol but easier to design because:

- k-way transitions
- Helper agents
- More flexible output definition

Population Protocol: Synthesis (Fast and Succinct)

References i

- Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.: Computation in networks of passively mobile finite-state sensors. p. 290-299. PODC '04, Association for Computing Machinery, New York, NY, USA (2004). https://doi.org/10.1145/1011767.1011810
- Blondin, M., Esparza, J., Genest, B., Helfrich, M., Jaax, S.: Succinct Population Protocols for Presburger Arithmetic. In: Paul, C., Bläser, M. (eds.) 37th International Symposium on Theoretical Aspects of Computer Science (STACS 2020). Leibniz International Proceedings in Informatics (LIPIcs), vol. 154, pp. 40:1-40:15. Schloss Dagstuhl-Leibniz-Zentrum für Informatik, Dagstuhl, Germany (2020). https://doi.org/10.4230/LIPIcs.STACS.2020.40
- Blondin, M., Esparza, J., Helfrich, M., Kučera, A., Meyer, P.J.: Checking qualitative liveness properties of replicated systems with stochastic scheduling. In: Lahiri, S.K., Wang, C. (eds.) Computer Aided Verification. pp. 372-397. Springer International Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-53291-8_20

References ii

- Czerner, P., Guttenberg, R., Helfrich, M., Esparza, J.: Decision power of weak asynchronous models of distributed computing. p. 115-125. PODC'21, Association for Computing Machinery, New York, NY, USA (2021). https://doi.org/10.1145/3465084.3467918, https://doi.org/10.1145/3465084.3467918
- [5] Czerner, P., Guttenberg, R., Helfrich, M., Esparza, J.: Fast and Succinct Population Protocols for Presburger Arithmetic. In: Aspnes, J., Michail, O. (eds.) 1st Symposium on Algorithmic Foundations of Dynamic Networks (SAND 2022). Leibniz International Proceedings in Informatics (LIPIcs), vol. 221, pp. 11:1-11:17. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany (2022). https://doi.org/10.4230/LIPIcs.SAND.2022.11
- [6] Czerner, P., Guttenberg, R., Helfrich, M., Esparza, J.: Fast and succinct population protocols for presburger arithmetic. Journal of Computer and System Sciences 140, 103481 (2024). https://doi.org/https://doi.org/10.1016/j.jcss.2023.103481, https://www.sciencedirect.com/science/article/pii/S0022000023000867

References iii

- D'Antoni, L., Helfrich, M., Kretinsky, J., Ramneantu, E., Weininger, M.: Automata tutor v3. In: Lahiri, S.K., Wang, C. (eds.) Computer Aided Verification. pp. 3-14. Springer International Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-53291-8_1
- [8] Esparza, J., Helfrich, M., Jaax, S., Meyer, P.J.: Peregrine 2.0: Explaining correctness of population protocols through stage graphs. In: Hung, D.V., Sokolsky, O. (eds.) Automated Technology for Verification and Analysis. pp. 550-556. Springer International Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-59152-6_32
- [9] Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. The Journal of Physical Chemistry 81(25), 2340-2361 (12 1977). https://doi.org/10.1021/j100540a008
- [10] Helfrich, M., Češka, M., Křetínský, J., Martiček, Š.: Abstraction-based segmental simulation of chemical reaction networks. In: Petre, I., Păun, A. (eds.) Computational Methods in Systems Biology. pp. 41–60. Springer International Publishing, Cham (2022). https://doi.org/10.1007/978-3-031-15034-0_3