
E�cient Analysis of Population Protocols

and Chemical Reaction Networks

Doctoral Defense

Martin Helfrich

December 5, 2023

https://orcid.org/0000-0002-3191-8098
https://www.tum.de/en/


Introduction: Motivation
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Introduction: Models

�Population protocols and chemical re-

action networks are formal models in

which many simple entities interact re-

sulting in a hard to analyse system.�
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Introduction: Use Cases

content 0

content 1

content 2

content 3

content 4

content 5

Epidemiology

Social Networks

Drug Discovery

Self-Organizing Systems

Robot Swarms

Sensor Networks

PP
CRN
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Introduction: Thesis Overview

Goal of Thesis:

Enable e�cient (or �practical�) analysis of these models via:

1. Theoretical results

2. New e�cient analysis methods

3. Easily accessible tools

Results of Thesis:

� E�cient veri�cation of population protocols

→ in this talk: focus on tool Peregrine

� Synthesis of e�cient population protocols

→ not in this talk

� E�cient transient analysis of chemical reaction networks

→ in this talk: focus on segmental simulation idea

4/18
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Population Protocols



Population Protocols: Intro (birds by Michael Blondin)

� Anonymous mobile agents with very few resources

� Agents change states via random pairwise interactions

� Each agent has opinion true/false

� Computes by stabilizing agents to some opinion
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Population Protocols: Example

At least as many blue birds as red birds?

Protocol:
� 4 states: blue/red,

large/small

� Two large birds of

di�erent colors become

small

� Large birds convert small

birds to their color

� Small blue birds convert

small red birds
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Population Protocols: Example

At least as many blue birds as red birds?

Protocol:
� 4 states: blue/red,

large/small

� Two large birds of

di�erent colors become

small

� Large birds convert small

birds to their color

� Small blue birds convert

small red birds

Correctness properties:(
≥

)
=⇒ FG

(
+ = 0

)
(

<
)

=⇒ FG
(

+ = 0
)

“Birds converge to color of
majority.”
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Population Protocols: Veri�cation Idea

De�nition: Con�guration

A vector describing the number of agents per state:

( 1 2 0 2 )
→ Fully determines global state

Observation:

Correctness proofs are typically structured in stages that trap the system

in progressively more constrained subsets of con�gurations.

→ Idea: Formalize structure as stage graph!
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Population Protocols: Stage Graphs

De�nition: Stage Graph

A stage graph for φpre ⇒ FGφpost is a �nite DAG satisfying:

1. Each node is an inductive set of con�gurations, called stage.

“It is impossible to leave stages.”

2. Every con�guration that satis�es φpre is in some stage.

“The system starts in a stage.”
3. In stages with successors, executions enters a successor with prob. 1.

“Stages lead to their successors.”
4. In stages without successors, all con�gurations satisfy φpost.

“Finally, the postcondition holds forever.”

S1

S2

S3 S4

Example:
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Population Protocols: Results

Def: Presburger Stage Graph

A stage graph that is described using only Presburger formulas.

Theory

A population protocol is correct if and only if there is a stage graph

proving it.

→ Decidable but stage graphs can be huge!

Practice

� Most systems have small stage graphs

� Most systems make progress by �killing� transitions

→ Use heuristics to e�ciently construct Presburger stage graphs

9/18



Population Protocols: Results

Def: Presburger Stage Graph

A stage graph that is described using only Presburger formulas.

Theory

A population protocol is correct if and only if there is a Presburger

stage graph proving it.

→ Decidable but stage graphs can be huge!

Practice

� Most systems have small stage graphs

� Most systems make progress by �killing� transitions

→ Use heuristics to e�ciently construct Presburger stage graphs

9/18



Population Protocols: Results

Def: Presburger Stage Graph

A stage graph that is described using only Presburger formulas.

Theory

A population protocol is correct if and only if there is a Presburger

stage graph proving it.

→ Decidable but stage graphs can be huge!

Practice

� Most systems have small stage graphs

� Most systems make progress by �killing� transitions

→ Use heuristics to e�ciently construct Presburger stage graphs

9/18



Population Protocols: Results

Def: Presburger Stage Graph

A stage graph that is described using only Presburger formulas.

Theory

A population protocol is correct if and only if there is a Presburger

stage graph proving it.

→ Decidable but stage graphs can be huge!

Practice

� Most systems have small stage graphs

� Most systems make progress by �killing� transitions

→ Use heuristics to e�ciently construct Presburger stage graphs

9/18



Population Protocols: Utility of Stage Graphs

Stage graphs:

� Can be e�ciently constructed for

most protocols

� Certify liveness properties

� Are independently checkable

� Explain how the protocol works

� Give speed guarantees

� Help to �nd counter examples

10/18
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Chemical Reaction Networks



Chemical Reaction Networks

Example: Viral Infection

Species: RNA,DNA,V,P

Initial state: (1× RNA)

End time: 200s

Reactions: DNA+ P
0.00001−−−−→ V RNA

0.25−−→ ∅
RNA

1000−−−→ RNA+ P P
2−→ ∅

DNA
0.025−−−→ DNA+ RNA

RNA
1−→ DNA+ RNA

Similar to population protocols but:

� Variable number of molecules

� Continuous time (,i.e., behaves like CTMC not DTMC)

� Focus on modeling systems (instead of designing them)
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CRN: Transient Analysis

How does the system evolve?

Transient analysis:

� Hard because of complex dynamics, state-space explosion,

stochasticity, sti�ness, multimodality, ...

� Two approaches:

� Direct (numerical)

� Indirect (using many trajectories)

This work

� Goal: E�ciently compute many simulations

� Idea: Use memoization!
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CRN: Simulation

Gillespie's stochastic simulation algorithm (SSA) [9]

� Sample one reaction at a time

� May take a long time

r=0.5

r=2

r=1.5

r=1

r=2

r=2

r=4

r=2

r=3

r=1

t = s

Time until the next reaction: ∆t ∼ EXP(4+2+3+1)

Probability of reactions: 4
10 ,

2
10 ,

3
10 ,

1
10
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CRN: Simulation
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CRN: Segmental Simulation

Precompute k short trajectories (called segments) for each state.

→ Simulate by sampling segments instead of single reactions.

sinit

s1
s2

� much faster!

� Problem: many states → too ine�cient
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CRN: Abstraction-Based Segmental Simulation

� Idea: Do not treat every state separately!

� States with similar species counts have similar propensities

→ their behave similarly

� Population-level abstraction: split state-space into regions (called

abstract states)

0

#Y

#X
1
2

4

8

1 2 4 8

repres.

� Choose representative for each abstract state (usually center)
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CRN: Abstraction-Based Segmental Simulation

Only precompute k segments for each representative.

MEMORY
(k = 3)

a b

c

d e
f

g

h

i

j
k
l

SIMULATION

sinit

c

d
g

i

h

i l

Segments end when they leave the abstract state.

→ Intuition: "signi�cant change"

Lazy: Do not precompute but �ll

memory on-the-�y!
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To save memory: Work with summaries instead of segments.
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CRN: Conclusion

Segmental simulation:

� Reuses previous simulations to generate

new ones

� Is an approximate simulation technique

� Accurately captures dynamics of most

systems

� Speeds up transient analysis

(up to 4000x faster)

� E�ciently predict the behavior of CRNs
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Thank you

THANK YOU!
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My Publications i

First Author:

� Checking Qualitative Liveness Properties of Replicated Systems with

Stochastic Scheduling (CAV'20) [3]

� Peregrine 2.0: Explaining Correctness of Population Protocols

Through Stage Graphs (ATVA'20) [8]

� Abstraction-Based Segmental Simulation of Chemical Reaction

Networks (CMSB'22) [10]

Non-�rst Author:

� Succinct Population Protocols for Presburger Arithmetic

(STACS'20) [2]

� Fast and Succinct Population Protocols for Presburger Arithmetic

(SAND'22) [5]



My Publications ii

Others (not part of thesis):

� Automata Tutor v3 (CAV20) [7]

� Decision Power of Weak Asynchronous Models of Distributed

Computing (PODC'21) [4]

� Fast and succinct population protocols for Presburger arithmetic

(Journal of Comp. and Sys. Sciences 2023) [6]



Population Protocol: Synthesis

Our result

For every quanti�er-free Presburger formula φ there is an population

protocol which

� has O(POLY(|φ|)) states,
→ succinct

� for n agents stabilizes in O(n2 log n) expected interactions, and

→ fast
� can be constructed e�ciently.



Population Protocol: Synthesis (Fast) (by Angluin et al. [1])

(2x > y) ∧ (x ≡3 2)

↓

1 2

3 ...

2x > y

1 2

3 ...

x ≡3 2

×

↓

1 1 1 2 ...

2 1 2 2 ...

.

.

.

.

.

.

.

.

.

(2x > y) ∧ (x ≡3 2)



Population Protocol: Synthesis Idea

Idea:

� Binary value representation

(instead of unary)

� Agents participate in computation of only one atomic formula

(instead of in all)

Population Computer

Like population protocol but easier to design because:

� k-way transitions

� Helper agents

� More �exible output de�nition



Population Protocol: Synthesis (Fast and Succinct)
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