Decision Power of Weak Asynchronous Models of Distributed Computing

Philipp Czerner Roland Guttenberg Javier Esparza Martin Helfrich

Technische Universität München

Common Ground and Differing Aspects

Every node executes identical finite-state machine.

Common Ground and Differing Aspects

Every node executes identical finite-state machine.
Nodes decide property of graph or initial labeling by consensus.

Common Ground and Differing Aspects

Every node executes identical finite-state machine.
Nodes decide property of graph or initial labeling by consensus.
For example: (existence of blue node) or (graph is a star).

Common Ground and Differing Aspects

Every node executes identical finite-state machine.
Nodes decide property of graph or initial labeling by consensus.
For example: (existence of blue node) or (graph is a star).

Common Ground and Differing Aspects

Every node executes identical finite-state machine.
Nodes decide property of graph or initial labeling by consensus.
For example: (existence of blue node) or (graph is a star).

Common Ground and Differing Aspects

Every node executes identical finite-state machine.
Nodes decide property of graph or initial labeling by consensus.
For example: (existence of blue node) or (graph is a star).

Common Ground and Differing Aspects

Every node executes identical finite-state machine.
Nodes decide property of graph or initial labeling by consensus.
For example: (existence of blue node) or (graph is a star).

Common Ground and Differing Aspects

Every node executes identical finite-state machine.
Nodes decide property of graph or initial labeling by consensus.
For example: (existence of blue node) or (graph is a star).

Common Ground and Differing Aspects

Every node executes identical finite－state machine．
Nodes decide property of graph or initial labeling by consensus．
For example：（existence of blue node）or（graph is a star）．

Nodes had to change answer．

Common Ground and Differing Aspects

Every node executes identical finite-state machine.
Nodes decide property of graph or initial labeling by consensus.
For example: (existence of blue node) or (graph is a star).

Common Ground and Differing Aspects

Every node executes identical finite-state machine.
Nodes decide property of graph or initial labeling by consensus.
For example: (existence of blue node) or (graph is a star).

Nodes had to change answer.

Common Ground and Differing Aspects

Every node executes identical finite-state machine.
Nodes decide property of graph or initial labeling by consensus.
For example: (existence of blue node) or (graph is a star).

Nodes had to change answer.

Common Ground and Differing Aspects

Every node executes identical finite-state machine.
Nodes decide property of graph or initial labeling by consensus.
For example: (existence of blue node) or (graph is a star).

Nodes had to change answer.

Common Ground and Differing Aspects

Every node executes identical finite-state machine.
Nodes decide property of graph or initial labeling by consensus.
For example: (existence of blue node) or (graph is a star).

Nodes had to change answer.

Common Ground and Differing Aspects

Every node executes identical finite-state machine.
Nodes decide property of graph or initial labeling by consensus.
For example: (existence of blue node) or (graph is a star).

Nodes had to change answer.

Common Ground and Differing Aspects

Every node executes identical finite-state machine.
Nodes decide property of graph or initial labeling by consensus.
For example: (existence of blue node) or (graph is a star).

Nodes had to change answer.

Common Ground and Differing Aspects

Every node executes identical finite-state machine.
Nodes decide property of graph or initial labeling by consensus.
For example: (existence of blue node) or (graph is a star).

Nodes had to change answer.

Common Ground and Differing Aspects

Every node executes identical finite-state machine.
Nodes decide property of graph or initial labeling by consensus.
For example: (existence of blue node) or (graph is a star).

Nodes had to change answer.

Common Ground and Differing Aspects

Every node executes identical finite-state machine.
Nodes decide property of graph or initial labeling by consensus.
For example: (existence of blue node) or (graph is a star).

Nodes had to change answer.

Common Ground and Differing Aspects

Every node executes identical finite-state machine.
Nodes decide property of graph or initial labeling by consensus.
For example: (existence of blue node) or (graph is a star).

Nodes had to change answer.

Nodes had to count their neighbors.

Distinguish Cycles(?)

Is it possible to distinguish different length cycles?

Distinguish Cycles（？）

Is it possible to distinguish different length cycles？
Another assumption comes into play：Nodes are anonymous．

Distinguish Cycles(?)

Is it possible to distinguish different length cycles?
Another assumption comes into play: Nodes are anonymous.

Distinguish Cycles(?)

Is it possible to distinguish different length cycles?
Another assumption comes into play: Nodes are anonymous.

Distinguish Cycles(?)

Is it possible to distinguish different length cycles?
Another assumption comes into play: Nodes are anonymous.

Distinguish Cycles(?)

Is it possible to distinguish different length cycles?
Another assumption comes into play: Nodes are anonymous.

Distinguish Cycles(?)

Is it possible to distinguish different length cycles?
Another assumption comes into play: Nodes are anonymous.

Distinguish Cycles(?)

Is it possible to distinguish different length cycles?
Another assumption comes into play: Nodes are anonymous.

Distinguish Cycles(?)

Is it possible to distinguish different length cycles?
Another assumption comes into play: Nodes are anonymous.
Not if same color nodes are always selected at same time. \rightarrow Fairness.

The Four Distinguishing Aspects of the Models

Detection	Acceptance	Selection	Fairness

The Four Distinguishing Aspects of the Models

Detection	Acceptance	Selection	Fairness
Non－Counting：$\{A, B\}$. A B－Main－A			

The Four Distinguishing Aspects of the Models

Detection	Acceptance	Selection	Fairness				
Non－Counting：$\{A, B\}$. A B－Main－A							
Counting：$\{\{A, A, B\}\}$. A B							
Main－A				\quad			
:---	:---	:---					

The Four Distinguishing Aspects of the Models

Detection	Acceptance	Selection	Fairness
$\begin{aligned} & \text { Non-Counting: }\{A, B\} \\ & \mathrm{A} \\ & \mathrm{~B}-\text { Main - } \mathrm{A} \end{aligned}$	Halting：Nodes can－ not change answer． ? - ? - Yes		
$\begin{aligned} & \text { Counting: }\{\{A, A, B\}\} \\ & \mathrm{A} \\ & \mathrm{~B}-\text { Main }-\mathrm{A} \end{aligned}$			

The Four Distinguishing Aspects of the Models

Detection	Acceptance	Selection	Fairness
Non-Counting: $\{A, B\}$. $\frac{A}{B} \frac{A}{B-M a i n}-A$	Halting: Nodes cannot change answer. ? - ? - Yes		
$\begin{aligned} & \text { Counting: }\{\{A, A, B\}\} \text {. } \\ & \text { A } \\ & \mathrm{B}-\text { Main }-\mathrm{A} \end{aligned}$	Stable Consensus: Nodes can change their answer. $\mathrm{No} \text { - No - Yes }$		

The Four Distinguishing Aspects of the Models

Detection	Acceptance	Selection	Fairness
Non-Counting: $\{A, B\}$ $\frac{A}{B} \frac{A}{B-M a i n}-A$	Halting: Nodes cannot change answer. $?-?-Y e s$	Synchronous:	
$\begin{aligned} & \text { Counting: }\{\{A, A, B\}\} \\ & \mathrm{A} \\ & \mathrm{~B}-\text { Main }-\mathrm{A} \end{aligned}$	Stable Consensus: Nodes can change their answer. $\mathrm{No}-\mathrm{No}-\mathrm{Yes}$		

The Four Distinguishing Aspects of the Models

The Four Distinguishing Aspects of the Models

Detection	Acceptance	Selection	Fairness
$\begin{aligned} & \text { Non-Counting: }\{A, B\} \text {. } \\ & \text { A } \\ & \text { B Main - } \end{aligned}$	Halting: Nodes cannot change answer. ?-? - Yes	Synchronous:	
$\begin{aligned} & \text { Counting: }\{\{A, A, B\}\} \text {. } \\ & \mathrm{A} \\ & \mathrm{~B}-\text { Main }-\mathrm{A} \end{aligned}$	Stable Consensus: Nodes can change their answer. $\mathrm{No}-\mathrm{No}-\mathrm{Yes}$	Exclusive:	
		Liberal:	

The Four Distinguishing Aspects of the Models

Detection	Acceptance	Selection	Fairness
$\begin{aligned} & \text { Non-Counting: }\{A, B\} \text {. } \\ & \text { A } \\ & \text { B - Main - } \end{aligned}$	Halting: Nodes cannot change answer. ?-? - Yes	Synchronous:	Adversarial Scheduling: Every node v is selected infinitely often.
$\begin{aligned} & \text { Counting: }\{\{A, A, B\} \text {. } \\ & \mathrm{A} \\ & \mathrm{~B}-\text { Main }-\mathrm{A} \end{aligned}$	Stable Consensus: Nodes can change their answer. $\mathrm{No} \text { - No - Yes }$	Exclusive: \square	
		Liberal:	

The Four Distinguishing Aspects of the Models

Detection	Acceptance	Selection	Fairness
$\begin{aligned} & \text { Non-Counting: }\{A, B\} \text {. } \\ & \text { A } \\ & \text { B Main - } \mathrm{A} \end{aligned}$	Halting: Nodes cannot change answer. ?-? - Yes	Synchronous:	Adversarial Scheduling: Every node v is selected infinitely often.
$\begin{aligned} & \text { Counting: }\{\{A, A, B\}\} \text {. } \\ & \mathrm{A}-\text { Main }-\mathrm{A} \end{aligned}$	Stable Consensus: Nodes can change their answer. No - No - Yes	Exclusive:	Pseudo-Stochastic: Every finite sequence of selections occurs infinitely often.
		Liberal:	

Classification

Prior Research: Choice in Selection Aspect does not influence decision power.

Classification

Prior Research: Choice in Selection Aspect does not influence decision power.

Detection	Acceptance	Fairness
d: non-counting	a: halting	f: adversarial scheduling
D: counting	A: stable consensus	F: pseudo-stochastic scheduling

Classification

Prior Research: Choice in Selection Aspect does not influence decision power.

Detection	Acceptance	Fairness
d: non-counting	a: halting	f: adversarial scheduling
D: counting	A: stable consensus	F: pseudo-stochastic scheduling

Labeling Properties

We determine the decision power for labeling properties．

Labeling Properties

We determine the decision power for labeling properties.
For every colored graph: color count $=$ function assigning to a color the number of nodes.

Labeling Properties

We determine the decision power for labeling properties．
For every colored graph：color count $=$ function assigning to a color the number of nodes．
A property φ is called a labeling property if it only depends on the color counts．

Labeling Properties

We determine the decision power for labeling properties.
For every colored graph: color count $=$ function assigning to a color the number of nodes.
A property φ is called a labeling property if it only depends on the color counts.

Non-Example	The graph is a star.

Labeling Properties

We determine the decision power for labeling properties.
For every colored graph: color count $=$ function assigning to a color the number of nodes.
A property φ is called a labeling property if it only depends on the color counts.

Non-Example	The graph is a star.
	\square
Accepted	

Labeling Properties

We determine the decision power for labeling properties.
For every colored graph: color count $=$ function assigning to a color the number of nodes.
A property φ is called a labeling property if it only depends on the color counts.

Non-Example	The graph is a star.
	\square
Accepted	
Rejected	

Labeling Properties

We determine the decision power for labeling properties．
For every colored graph：color count $=$ function assigning to a color the number of nodes．
A property φ is called a labeling property if it only depends on the color counts．

Non－Example	The graph is a star．
	\square
Accepted	
Rejected	

Example	There exists a blue node．

Labeling Properties

We determine the decision power for labeling properties．
For every colored graph：color count $=$ function assigning to a color the number of nodes．
A property φ is called a labeling property if it only depends on the color counts．

Non－Example	The graph is a star．
	\square
Accepted	
Rejected	

Example	There exists a blue node．
	\square
Accepted	\square

Labeling Properties

We determine the decision power for labeling properties．
For every colored graph：color count $=$ function assigning to a color the number of nodes．
A property φ is called a labeling property if it only depends on the color counts．

Non－Example	The graph is a star．
	\square
Accepted	
Rejected	

Example	There exists a blue node．
	\square
Accepted	\square
	\square
Rejected	\square

Our Results/Unrestricted Set of Graphs

Our Results／Unrestricted Set of Graphs

Property	There exists one blue node．
	\square
Accepted	\square
Rejected	\square

Our Results/Unrestricted Set of Graphs

Class	Trivial
includes	True, False

Our Results／Unrestricted Set of Graphs

Property	There exist more blue nodes than red nodes．
Accepted	\square
	\square
Rejected	\square

Our Results／Unrestricted Set of Graphs


```
daf
```


Our Results／Unrestricted Set of Graphs

Where is the Limit？What about PRIMES？

Our Results/Unrestricted Set of Graphs

Class	NL $=\operatorname{NSPACE}(\log n)$
inputs	n blue nodes means input size $\Theta(n)$, i.e. input in unary!
includes	There exist more blue nodes than red nodes. The number of blue nodes is a prime number.

Our Results／Unrestricted Set of Graphs

Class	Distinguishing Property
Cutoff（1）	There exists one blue node．
Cutoff	There exist two blue nodes．
NL	There exist more blue nodes than red nodes．

Our Results/k-Degree-Bounded Graphs

Our Results／k－Degree－Bounded Graphs

Property	There exist more blue nodes than red nodes．
Accepted	\square
Rejected	\square

Our Results／k－Degree－Bounded Graphs

daf

Our Results/k-Degree-Bounded Graphs

What is the new limit for the strongest model? Has to be at least NL.

Our Results／k－Degree－Bounded Graphs


```
    daf
```


Our Results/k-Degree-Bounded Graphs

Our Results／k－Degree－Bounded Graphs

Our Results／k－Degree－Bounded Graphs

Our Results/k-Degree-Bounded Graphs

Our Results/k-Degree-Bounded Graphs

Class	Distinguishing Property
Cutoff(1)	There exists one blue node.
ISM	There exist more blue nodes than red nodes.
$\operatorname{NSPACE}(n)$	The number of blue nodes is a prime number.

Thank you for your Attention!

