Abstraction-Based Segmental Simulation of Chemical Reaction Networks

Computational Methods in Systems Biology (CMSB 2022)

Martin Helfrich © Milan Češka © Jan Křetínský © Štefan Martiček © September 14, 2022

Chemical Reaction Networks (CRN):

- Model real-world biochemical systems
- Many applications (e.g. in medicine & molecular programming)

Chemical Reaction Networks (CRN):

- Model real-world biochemical systems
- Many applications (e.g. in medicine & molecular programming)

Transient analysis:

- "How does the system evolve?"
- Hard because of complex dynamics, state-space explosion, stochasticity, stiffness, and multimodality
- Two approaches:
 - Direct (numerical)
 - Indirect (using many trajectories)

Chemical Reaction Networks (CRN):

- Model real-world biochemical systems
- Many applications (e.g. in medicine & molecular programming)

Transient analysis:

- "How does the system evolve?"
- Hard because of complex dynamics, state-space explosion, stochasticity, stiffness, and multimodality
- Two approaches:
 - Direct (numerical)
 - Indirect (using many trajectories)

This Work

• Goal: compute many simulations fast

Chemical Reaction Networks (CRN):

- Model real-world biochemical systems
- Many applications (e.g. in medicine & molecular programming)

Transient analysis:

- "How does the system evolve?"
- Hard because of complex dynamics, state-space explosion, stochasticity, stiffness, and multimodality
- Two approaches:
 - Direct (numerical)
 - Indirect (using many trajectories)

This Work

- Goal: compute many simulations fast
- Idea: using memorization

Example: Viral Infection

Species	RNA, DNA, V, P
Initial state	(1 imes RNA)
End time	200s
Reactions	$DNA + P \xrightarrow{0.00001125 \cdot DNA \cdot P} V$
	$RNA \xrightarrow{1000 \cdot RNA} RNA + P$
	$DNA \xrightarrow{0.025 \cdot DNA} DNA + RNA$
	$RNA \xrightarrow{1 \cdot RNA} DNA + RNA$
	$RNA \xrightarrow{0.25 \cdot RNA} \emptyset$
	$P \xrightarrow{1.9985 \cdot P} \emptyset$

- Evolution governed by Chemical Master Equation
- Gives rise to discrete-space continuous-time Markov chain (CTMC)

Gillespie's stochastic simulation algorithm (SSA) [3]

• Sample one reaction at a time

Gillespie's stochastic simulation algorithm (SSA) [3]

• Sample one reaction at a time

$$t = 0s$$
 • S_{init}

Start in initial state.

Gillespie's stochastic simulation algorithm (SSA) [3]

• Sample one reaction at a time

Compute rate of all reactions according to their propensity functions.

Gillespie's stochastic simulation algorithm (SSA) [3]

• Sample one reaction at a time

Time until the next reaction: $\Delta t \sim EXP(0.5+2+1.5)$ Probability of reactions: $\frac{0.5}{4}, \frac{2}{4}, \frac{1.5}{4}$

Gillespie's stochastic simulation algorithm (SSA) [3]

• Sample one reaction at a time

Gillespie's stochastic simulation algorithm (SSA) [3]

• Sample one reaction at a time

Time until the next reaction: $\Delta t \sim EXP(1+2+2)$ Probability of reactions: $\frac{1}{5}, \frac{2}{5}, \frac{2}{5}$

Gillespie's stochastic simulation algorithm (SSA) [3]

Sample one reaction at a time

Time until the next reaction: $\Delta t \sim EXP(4+2+3+1)$ Probability of reactions: $\frac{4}{10}, \frac{2}{10}, \frac{3}{10}, \frac{1}{10}$

Gillespie's stochastic simulation algorithm (SSA) [3]

- Sample one reaction at a time
- May take a long time

Precompute k short trajectories (called segments) for each state. \rightarrow Simulate by sampling segments instead of single reactions.

Precompute k short trajectories (called segments) for each state. \rightarrow Simulate by sampling segments instead of single reactions.

Precompute k short trajectories (called segments) for each state.

 \rightarrow Simulate by sampling segments instead of single reactions.

Precompute k short trajectories (called segments) for each state. \rightarrow Simulate by sampling segments instead of single reactions.

• much faster!

Precompute k short trajectories (called segments) for each state. \rightarrow Simulate by sampling segments instead of single reactions.

- much faster!
- Problem: many states \rightarrow too inefficient

• Idea: Do not treat every state separately!

- Idea: Do not treat every state separately!
- States with similar species counts have similar propensities \rightarrow their behave similarly

- Idea: Do not treat every state separately!
- States with similar species counts have similar propensities \rightarrow their behave similarly
- Population-level abstraction: split state-space into regions (called abstract states)

- Idea: Do not treat every state separately!
- States with similar species counts have similar propensities \rightarrow their behave similarly
- Population-level abstraction: split state-space into regions (called abstract states)

• Population levels grow exponentially

- Idea: Do not treat every state separately!
- States with similar species counts have similar propensities \rightarrow their behave similarly
- Population-level abstraction: split state-space into regions (called abstract states)

- Population levels grow exponentially
- Choose representative for each abstract state (usually center)

Only precompute k segments for each representative.

Segments end when they leave the abstract state.

```
\rightarrow Intuition: "significant change"
```


Only precompute k segments for each representative.

To save memory: Work with summaries instead of segments.

Lazy: Do not precompute but fill memory on-the-fly!

Lazy: Do not precompute but fill memory on-the-fly!

Lazy: Do not precompute but fill memory on-the-fly!

Lazy: Do not precompute but fill memory on-the-fly!

Lazy: Do not precompute but fill memory on-the-fly!

Only precompute k segments for each representative.

Lazy: Do not precompute but fill memory on-the-fly!

Lazy: Do not precompute but fill memory on-the-fly!

Lazy: Do not precompute but fill memory on-the-fly!

There are two error sources:

There are two error sources:

- 1. Limited number of memorized segments:
 - Cannot faithfully represent actual segment distribution
 - Error vanishes for $k \to \infty$

There are two error sources:

- 1. Limited number of memorized segments:
 - Cannot faithfully represent actual segment distribution
 - Error vanishes for $k \to \infty$
- 2. Using representative's segments
 - Similar species counts \rightarrow similar propensities \rightarrow similar segments
 - Error gets smaller if we add more population levels

Example: Viral Infection

Species	RNA, DNA, V, P
Initial state	$(1 \times \text{RNA})$
End time	200s
Reactions	$DNA + P \xrightarrow{0.00001125 \cdot DNA \cdot P} V$
	$RNA \xrightarrow{1000 \cdot RNA} RNA + P$
	$DNA \xrightarrow{0.025 \cdot DNA} DNA + RNA$
	$RNA \xrightarrow{1 \cdot RNA} DNA + RNA$
	$RNA \xrightarrow{0.25 \cdot RNA} \emptyset$
	$\mathbf{P} \xrightarrow{1.9985 \cdot \mathbf{P}} \emptyset$

SSA - Simulation 1

SSA - Simulation 2

SSA - Simulation 3

SEG - Simulation 4

SEG - Simulation 5

SEG - Simulation 6

	Mean	Var
SSA	13.6	2878
SEG	13.5	2685

Speed-up:

• Depends on model and target accuracy

- Depends on model and target accuracy
- Accelerates with number of simulations

- Depends on model and target accuracy
- Accelerates with number of simulations
- Can already be faster than SSA in first simulation

- Depends on model and target accuracy
- Accelerates with number of simulations
- Can already be faster than SSA in first simulation
- Memorization: trade-off between speed and memory

Oversimplified comparison with other approaches:

Approach	Speed-up	Accuracy
SSA [3]	1x	perfect
au-leaping [2]	\sim 5x	very good
Hybrid Simulation [4]	\sim 50x	good
Deep Learning ¹ [1]	\sim 100×	good
Segmental Simulation ²	\sim 200x	good

¹requires precomputed data and long training period

²significant memory requirement

• Handle larger models: adaptive memory allocation

- Handle larger models: adaptive memory allocation
- Formal error bounds

- Handle larger models: adaptive memory allocation
- Formal error bounds
- Segmental simulation as general framework for accelerating simulations

- Handle larger models: adaptive memory allocation
- Formal error bounds
- Segmental simulation as general framework for accelerating simulations

- Cairoli, F., Carbone, G., Bortolussi, L.: Abstraction of markov population dynamics via generative adversarial nets. In: CMSB'21. pp. 19–35. Springer (2021)
- [2] Cao, Y., Gillespie, D.T., Petzold, L.R.: Efficient step size selection for the tau-leaping simulation method. The Journal of chemical physics 124(4), 044109 (2006)
- [3] Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. The journal of physical chemistry 81(25), 2340–2361 (1977)
- [4] Hepp, B., Gupta, A., Khammash, M.: Adaptive hybrid simulations for multiscale stochastic reaction networks. The Journal of chemical physics 142(3), 034118 (2015)

- Only abstract states \rightarrow rounding
- Rounding looses progress in all but one dimension

- Only abstract states \rightarrow rounding
- Rounding looses progress in all but one dimension

Example: Rounding Problem	
Species	ON, OFF, X
Initial state	$(1 \times ON, 50 \times X)$
Reactions	$ON \rightarrow OFF + X$
	$OFF \rightarrow ON + X$

- Only abstract states \rightarrow rounding
- Rounding looses progress in all but one dimension

Example: Rounding Problem	
Species	ON, OFF, X
Initial state	$(1 \times ON, 50 \times X)$
Reactions	$ON \rightarrow OFF + X$
	$OFF \rightarrow ON + X$

- Only abstract states \rightarrow rounding
- Rounding looses progress in all but one dimension

Example: Rounding Problem	
Species	ON, OFF, X
Initial state	$(1 \times ON, 50 \times X)$
Reactions	$ON \rightarrow OFF + X$
	$OFF \rightarrow ON + X$

- Only abstract states \rightarrow rounding
- Rounding looses progress in all but one dimension

Example: Rounding Problem	
Species	ON, OFF, X
Initial state	$(1 \times ON, 50 \times X)$
Reactions	$ON \rightarrow OFF + X$
	$OFF \rightarrow ON + X$

- Only abstract states \rightarrow rounding
- Rounding looses progress in all but one dimension

Example: Rounding Problem	
Species	ON, OFF, X
Initial state	$(1 \times ON, 50 \times X)$
Reactions	$ON \rightarrow OFF + X$
	$OFF \rightarrow ON + X$

Lazy Algorithm

```
Inputs : \mathcal{N} (CRN), k (number of segments), c (partitioning parameter),
            t_{end} (time horizon), s_{init} (initial state) and m (number of simulations)
   Output: list of m segmental simulations
1 simulations := [];
2 memory := \{\};
                                   // mapping each abstract state to a list of segments
3 for 1 to m do
        s := s_{init}; t := 0; simulation := [(s, t)];
 4
       while t < t_{end} do
 5
             a := abstractState<sub>c</sub>(s);
6
             if |memory(a)| < k then
7
                 segment := sampleNewSegm(N, a.representative); // sample new segment
8
                 memory(a).add(segment);
9
                                                                         // save it for reuse
             else
10
                 segment := chooseUniformlyFrom(memory(a));
                                                                        // reuse old segment
11
             end
12
             // apply segment's relative effects
             s := s + segment.\Delta_{state}; t := t + segment.\Delta_{time};
13
             simulation.add((s, t));
14
       end
15
        simulations.add(simulation);
16
17 end
18 return simulations
```
Mod.	SSA	SEG <i>k</i> =10			SEG k=100			SEG k=1000		
		<i>c</i> =2	c = 1.5	c=1.3	<i>c</i> =2	c=1.5	c=1.3	<i>c</i> =2	c=1.5	c=1.3
PP	0.014s	70×	70×	70x	70×	70×	23x	28x	23x	12x
VI	0.88s	730x	380x	180x	100×	48x	17x	8.6x	4.8x	2.9x
TS	22s	360x	360x	340×	390x	350x	280x	250x	190×	110x
RP	9.1s	760×	540x	320x	300x	140x	62x	54x	21x	7.4x

Table 1: Average run-time of one SSA simulation and the speedup factor of segmental simulation when computing 10,000 simulations with different abstraction parameters.

Mod.	SEG <i>k</i> =10			SI	EG $k=1$	00	SEG k=1000		
	<i>c</i> =2	c=1.5	c=1.3	<i>c</i> =2	c=1.5	c=1.3	<i>c</i> =2	c=1.5	c=1.3
PP	25kb	61kb	130kb	250kb	570kb	1.3mb	2.2mb	4.8mb	11mb
VI	210kb	730kb	2.0mb	1.8mb	4.8mb	13mb	11mb	25mb	53mb
TS	1.2mb	3.0mb	8.7mb	15mb	37mb	85mb	100mb	250mb	550mb
RP	3.8mb	12mb	34mb	43mb	120mb	300mb	310mb	760mb	1.0gb

 Table 2: Size of segmental abstraction after 10,000 simulations for different parameters.