
Abstraction-Based Segmental Simulation of

Chemical Reaction Networks

Computational Methods in Systems Biology (CMSB 2022)

Martin Helfrich Milan Češka Jan Křet́ınský Štefan Martiček

September 14, 2022

https://orcid.org/0000-0002-3191-8098
https://orcid.org/0000-0002-0300-9727
https://orcid.org/0000-0002-8122-2881
https://orcid.org/0000-0003-4498-7436
https://www.tum.de/en/
https://erc.europa.eu/
https://www.vut.cz/en/

Introduction

Chemical Reaction Networks (CRN):

� Model real-world biochemical systems

� Many applications (e.g. in medicine & molecular programming)

Transient analysis:

� ”How does the system evolve?”

� Hard because of complex dynamics, state-space explosion,

stochasticity, stiffness, and multimodality

� Two approaches:

� Direct (numerical)

� Indirect (using many trajectories)

This Work

� Goal: compute many simulations fast

� Idea: using memorization

1

Introduction

Chemical Reaction Networks (CRN):

� Model real-world biochemical systems

� Many applications (e.g. in medicine & molecular programming)

Transient analysis:

� ”How does the system evolve?”

� Hard because of complex dynamics, state-space explosion,

stochasticity, stiffness, and multimodality

� Two approaches:

� Direct (numerical)

� Indirect (using many trajectories)

This Work

� Goal: compute many simulations fast

� Idea: using memorization

1

Introduction

Chemical Reaction Networks (CRN):

� Model real-world biochemical systems

� Many applications (e.g. in medicine & molecular programming)

Transient analysis:

� ”How does the system evolve?”

� Hard because of complex dynamics, state-space explosion,

stochasticity, stiffness, and multimodality

� Two approaches:

� Direct (numerical)

� Indirect (using many trajectories)

This Work

� Goal: compute many simulations fast

� Idea: using memorization

1

Introduction

Chemical Reaction Networks (CRN):

� Model real-world biochemical systems

� Many applications (e.g. in medicine & molecular programming)

Transient analysis:

� ”How does the system evolve?”

� Hard because of complex dynamics, state-space explosion,

stochasticity, stiffness, and multimodality

� Two approaches:

� Direct (numerical)

� Indirect (using many trajectories)

This Work

� Goal: compute many simulations fast

� Idea: using memorization

1

CRNs

Example: Viral Infection

Species RNA,DNA,V,P

Initial state (1×RNA)

End time 200s

Reactions DNA+P
0.00001125·DNA·P−−−−−−−−−−−→ V

RNA
1000·RNA−−−−−−→ RNA+P

DNA
0.025·DNA−−−−−−→ DNA+RNA

RNA
1·RNA−−−−→ DNA+RNA

RNA
0.25·RNA−−−−−−→ ∅

P
1.9985·P−−−−−→ ∅

� Evolution governed by Chemical Master Equation

� Gives rise to discrete-space continuous-time Markov chain (CTMC)

2

Simulation

Gillespie’s stochastic simulation algorithm (SSA) [3]

� Sample one reaction at a time

� May take a long time

r=0.5

r=2

r=1.5

r=1

r=2

r=2

r=4

r=2

r=3

r=1

t = s

Time until the next reaction: ∆t ∼ EXP(4+2+3+1)

Probability of reactions: 4
10 ,

2
10 ,

3
10 ,

1
10

3

Simulation

Gillespie’s stochastic simulation algorithm (SSA) [3]

� Sample one reaction at a time

� May take a long time

sinit

r=0.5

r=2

r=1.5

r=1

r=2

r=2

r=4

r=2

r=3

r=1

t = 0s

Start in initial state.

Time until the next reaction:

∆t ∼ EXP(4+2+3+1)

Probability of reactions: 4
10 ,

2
10 ,

3
10 ,

1
10

3

Simulation

Gillespie’s stochastic simulation algorithm (SSA) [3]

� Sample one reaction at a time

� May take a long time

r=0.5

r=2

r=1.5

r=1

r=2

r=2

r=4

r=2

r=3

r=1

t = 0s

Compute rate of all reactions according to their propensity functions.

Time until the next reaction: ∆t ∼ EXP(4+2+3+1)

Probability of reactions: 4
10 ,

2
10 ,

3
10 ,

1
10

3

Simulation

Gillespie’s stochastic simulation algorithm (SSA) [3]

� Sample one reaction at a time

� May take a long time

r=0.5

r=2

r=1.5

r=1

r=2

r=2

r=4

r=2

r=3

r=1

t = 0s

Time until the next reaction: ∆t ∼ EXP(0.5+2+1.5)

Probability of reactions: 0.5
4 , 2

4 ,
1.5
4

Time until the next reaction:

∆t ∼ EXP(4+2+3+1)

Probability of reactions: 4
10 ,

2
10 ,

3
10 ,

1
10

3

Simulation

Gillespie’s stochastic simulation algorithm (SSA) [3]

� Sample one reaction at a time

� May take a long time

sinit

r=0.5

r=2

r=1.5

r=1

r=2

r=2

r=4

r=2

r=3

r=1

t = 0.18s

Time until the next reaction: ∆t ∼ EXP(4+2+3+1)

Probability of reactions: 4
10 ,

2
10 ,

3
10 ,

1
10

3

Simulation

Gillespie’s stochastic simulation algorithm (SSA) [3]

� Sample one reaction at a time

� May take a long time

sinit

r=0.5

r=2

r=1.5

r=1

r=2

r=2

r=4

r=2

r=3

r=1

t = 0.18s

Time until the next reaction: ∆t ∼ EXP(1+2+2)

Probability of reactions: 1
5 ,

2
5 ,

2
5

Time until the next reaction:

∆t ∼ EXP(4+2+3+1)

Probability of reactions: 4
10 ,

2
10 ,

3
10 ,

1
10

3

Simulation

Gillespie’s stochastic simulation algorithm (SSA) [3]

� Sample one reaction at a time

� May take a long time

sinit

r=0.5

r=2

r=1.5

r=1

r=2

r=2

r=4

r=2

r=3

r=1

t = 0.42s

Time until the next reaction: ∆t ∼ EXP(4+2+3+1)

Probability of reactions: 4
10 ,

2
10 ,

3
10 ,

1
10

3

Simulation

Gillespie’s stochastic simulation algorithm (SSA) [3]

� Sample one reaction at a time

� May take a long time

sinit

r=0.5

r=2

r=1.5

r=1

r=2

r=2

r=4

r=2

r=3

r=1

t = 0.47s

Time until the next reaction: ∆t ∼ EXP(4+2+3+1)

Probability of reactions: 4
10 ,

2
10 ,

3
10 ,

1
10

3

Segmental Simulation

Precompute k short trajectories (called segments) for each state.

→ Simulate by sampling segments instead of single reactions.

sinit

s1
s2

� much faster!

� Problem: many states → too inefficient

4

Segmental Simulation

Precompute k short trajectories (called segments) for each state.

→ Simulate by sampling segments instead of single reactions.

sinit

s1
s2

� much faster!

� Problem: many states → too inefficient

4

Segmental Simulation

Precompute k short trajectories (called segments) for each state.

→ Simulate by sampling segments instead of single reactions.

sinit

s1
s2

� much faster!

� Problem: many states → too inefficient

4

Segmental Simulation

Precompute k short trajectories (called segments) for each state.

→ Simulate by sampling segments instead of single reactions.

sinit

s1
s2

� much faster!

� Problem: many states → too inefficient

4

Segmental Simulation

Precompute k short trajectories (called segments) for each state.

→ Simulate by sampling segments instead of single reactions.

sinit

s1
s2

� much faster!

� Problem: many states → too inefficient

4

Abstraction-Based Segmental Simulation

� Idea: Do not treat every state separately!

� States with similar species counts have similar propensities

→ their behave similarly

� Population-level abstraction: split state-space into regions (called

abstract states)

0

#Y

#X
1
2

4

8

1 2 4 8

repres.

� Population levels grow exponentially

� Choose representative for each abstract state (usually center)

5

Abstraction-Based Segmental Simulation

� Idea: Do not treat every state separately!

� States with similar species counts have similar propensities

→ their behave similarly

� Population-level abstraction: split state-space into regions (called

abstract states)

0

#Y

#X
1
2

4

8

1 2 4 8

repres.

� Population levels grow exponentially

� Choose representative for each abstract state (usually center)

5

Abstraction-Based Segmental Simulation

� Idea: Do not treat every state separately!

� States with similar species counts have similar propensities

→ their behave similarly

� Population-level abstraction: split state-space into regions (called

abstract states)

0

#Y

#X
1
2

4

8

1 2 4 8

repres.

� Population levels grow exponentially

� Choose representative for each abstract state (usually center)

5

Abstraction-Based Segmental Simulation

� Idea: Do not treat every state separately!

� States with similar species counts have similar propensities

→ their behave similarly

� Population-level abstraction: split state-space into regions (called

abstract states)

0

#Y

#X
1
2

4

8

1 2 4 8

repres.

� Population levels grow exponentially

� Choose representative for each abstract state (usually center)

5

Abstraction-Based Segmental Simulation

� Idea: Do not treat every state separately!

� States with similar species counts have similar propensities

→ their behave similarly

� Population-level abstraction: split state-space into regions (called

abstract states)

0

#Y

#X
1
2

4

8

1 2 4 8

repres.

� Population levels grow exponentially

� Choose representative for each abstract state (usually center)
5

Abstraction-Based Segmental Simulation

Only precompute k segments for each representative.

MEMORY
(k = 3)

a b

c

d e
f

g

h

i

j
k
l

SIMULATION

sinit

c

d
g
i
h

i l

Segments end when they leave the abstract state.

→ Intuition: ”significant change”

Lazy: Do not precompute but fill

memory on-the-fly!

6

Abstraction-Based Segmental Simulation

Only precompute k segments for each representative.

MEMORY
(k = 3)

a b

c

d e
f

g

h

i

j
k
l

SIMULATION

sinit

c

d
g
i
h

i l

Lazy: Do not precompute but fill memory on-the-fly!

6

Abstraction-Based Segmental Simulation

Only precompute k segments for each representative.

MEMORY
(k = 3)

a b

c

d e
f

g

h

i

j
k
l

SIMULATION

sinit
c

d
g
i
h

i l

Lazy: Do not precompute but fill memory on-the-fly!

6

Abstraction-Based Segmental Simulation

Only precompute k segments for each representative.

MEMORY
(k = 3)

a b

c

d e
f

g

h

i

j
k
l

SIMULATION

sinit
c

d

g
i
h

i l

Lazy: Do not precompute but fill memory on-the-fly!

6

Abstraction-Based Segmental Simulation

Only precompute k segments for each representative.

MEMORY
(k = 3)

a b

c

d e
f

g

h

i

j
k
l

SIMULATION

sinit
c

d
g

i
h

i l

Lazy: Do not precompute but fill memory on-the-fly!

6

Abstraction-Based Segmental Simulation

Only precompute k segments for each representative.

MEMORY
(k = 3)

a b

c

d e
f

g

h

i

j
k
l

SIMULATION

sinit
c

d
g
i

h
i l

Lazy: Do not precompute but fill memory on-the-fly!

6

Abstraction-Based Segmental Simulation

Only precompute k segments for each representative.

MEMORY
(k = 3)

a b

c

d e
f

g

h

i

j
k
l

SIMULATION

sinit
c

d
g
i
h

i l

Lazy: Do not precompute but fill memory on-the-fly!

6

Abstraction-Based Segmental Simulation

Only precompute k segments for each representative.

MEMORY
(k = 3)

a b

c

d e
f

g

h

i

j
k
l

SIMULATION

sinit
c

d
g
i
h

i

l

Lazy: Do not precompute but fill memory on-the-fly!

6

Abstraction-Based Segmental Simulation

Only precompute k segments for each representative.

MEMORY
(k = 3)

a b

c

d e
f

g

h

i

j
k
l

SIMULATION

sinit
c

d
g
i
h

i l

Lazy: Do not precompute but fill memory on-the-fly!

6

Abstraction-Based Segmental Simulation

Only precompute k segments for each representative.

MEMORY
(k = 3)

a b

c

d e
f

g

h

i

j
k
l

SIMULATION

sinit
c

d
g
i
h

i l

To save memory: Work with summaries instead of segments.

Lazy: Do

not precompute but fill memory on-the-fly!

6

Abstraction-Based Segmental Simulation

Only precompute k segments for each representative.

MEMORY
(k = 3)

a b

c

d e
f

g

h

i

j
k

l

SIMULATION

sinit

c

d
g
i
h

i l

Lazy: Do not precompute but fill memory on-the-fly!

6

Abstraction-Based Segmental Simulation

Only precompute k segments for each representative.

MEMORY
(k = 3)

a b

c

d e
f

g

h

i

j
k

l

SIMULATION

sinit
c

d
g
i
h

i l

Lazy: Do not precompute but fill memory on-the-fly!

6

Abstraction-Based Segmental Simulation

Only precompute k segments for each representative.

MEMORY
(k = 3)

a b

c

d

e
f

g

h

i

j
k

l

SIMULATION

sinit
c

d

g
i
h

i l

Lazy: Do not precompute but fill memory on-the-fly!

6

Abstraction-Based Segmental Simulation

Only precompute k segments for each representative.

MEMORY
(k = 3)

a b

c

d

e
f

g

h

i

j
k

l

SIMULATION

sinit
c

d
g

i
h

i l

Lazy: Do not precompute but fill memory on-the-fly!

6

Abstraction-Based Segmental Simulation

Only precompute k segments for each representative.

MEMORY
(k = 3)

a b

c

d

e
f

g

h

i

j
k

l

SIMULATION

sinit
c

d
g
i

h
i l

Lazy: Do not precompute but fill memory on-the-fly!

6

Abstraction-Based Segmental Simulation

Only precompute k segments for each representative.

MEMORY
(k = 3)

a b

c

d

e
f

g

h

i

j
k

l

SIMULATION

sinit
c

d
g
i
h

i l

Lazy: Do not precompute but fill memory on-the-fly!

6

Abstraction-Based Segmental Simulation

Only precompute k segments for each representative.

MEMORY
(k = 3)

a b

c

d

e
f

g

h

i

j
k

l

SIMULATION

sinit
c

d
g
i
h

i

l

Lazy: Do not precompute but fill memory on-the-fly!

6

Abstraction-Based Segmental Simulation

Only precompute k segments for each representative.

MEMORY
(k = 3)

a b

c

d

e
f

g

h

i

j
k
l

SIMULATION

sinit
c

d
g
i
h

i l

Lazy: Do not precompute but fill memory on-the-fly!

6

Introduced Inaccuracy

There are two error sources:

1. Limited number of memorized segments:

� Cannot faithfully represent actual segment distribution

� Error vanishes for k → ∞

2. Using representative’s segments

� Similar species counts → similar propensities → similar segments

� Error gets smaller if we add more population levels

7

Introduced Inaccuracy

There are two error sources:

1. Limited number of memorized segments:

� Cannot faithfully represent actual segment distribution

� Error vanishes for k → ∞

2. Using representative’s segments

� Similar species counts → similar propensities → similar segments

� Error gets smaller if we add more population levels

7

Introduced Inaccuracy

There are two error sources:

1. Limited number of memorized segments:

� Cannot faithfully represent actual segment distribution

� Error vanishes for k → ∞

2. Using representative’s segments

� Similar species counts → similar propensities → similar segments

� Error gets smaller if we add more population levels

7

Evaluation - Accuracy

Example: Viral Infection

Species RNA,DNA,V,P

Initial state (1×RNA)

End time 200s

Reactions DNA+P
0.00001125·DNA·P−−−−−−−−−−−→ V

RNA
1000·RNA−−−−−−→ RNA+P

DNA
0.025·DNA−−−−−−→ DNA+RNA

RNA
1·RNA−−−−→ DNA+RNA

RNA
0.25·RNA−−−−−−→ ∅

P
1.9985·P−−−−−→ ∅

8

Evaluation - Accuracy

SSA - Simulation 1

8

Evaluation - Accuracy

SSA - Simulation 2

8

Evaluation - Accuracy

SSA - Simulation 3

8

Evaluation - Accuracy

SEG - Simulation 4

8

Evaluation - Accuracy

SEG - Simulation 5

8

Evaluation - Accuracy

SEG - Simulation 6

8

Evaluation - Accuracy

Mean Var

SSA 13.6 2878

SEG 13.5 2685

9

Evaluation - Performance

Speed-up:

� Depends on model and target accuracy

� Accelerates with number of simulations

� Can already be faster than SSA in first simulation

� Memorization: trade-off between speed and memory

10

Evaluation - Performance

Speed-up:

� Depends on model and target accuracy

� Accelerates with number of simulations

� Can already be faster than SSA in first simulation

� Memorization: trade-off between speed and memory

10

Evaluation - Performance

Speed-up:

� Depends on model and target accuracy

� Accelerates with number of simulations

� Can already be faster than SSA in first simulation

� Memorization: trade-off between speed and memory

10

Evaluation - Performance

Speed-up:

� Depends on model and target accuracy

� Accelerates with number of simulations

� Can already be faster than SSA in first simulation

� Memorization: trade-off between speed and memory

10

Evaluation - Performance

Speed-up:

� Depends on model and target accuracy

� Accelerates with number of simulations

� Can already be faster than SSA in first simulation

� Memorization: trade-off between speed and memory

10

Evaluation - Comparison

Oversimplified comparison with other approaches:

Approach Speed-up Accuracy

SSA [3] 1x perfect

τ -leaping [2] ∼5x very good

Hybrid Simulation [4] ∼50x good

Deep Learning1 [1] ∼100x good

Segmental Simulation2 ∼200x good

1requires precomputed data and long training period
2significant memory requirement

11

Future Work

� Handle larger models: adaptive memory allocation

� Formal error bounds

� Segmental simulation as general framework for accelerating

simulations

Thank you!

12

Future Work

� Handle larger models: adaptive memory allocation

� Formal error bounds

� Segmental simulation as general framework for accelerating

simulations

Thank you!

12

Future Work

� Handle larger models: adaptive memory allocation

� Formal error bounds

� Segmental simulation as general framework for accelerating

simulations

Thank you!

12

Future Work

� Handle larger models: adaptive memory allocation

� Formal error bounds

� Segmental simulation as general framework for accelerating

simulations

Thank you!

12

References

[1] Cairoli, F., Carbone, G., Bortolussi, L.: Abstraction of markov

population dynamics via generative adversarial nets. In: CMSB’21.

pp. 19–35. Springer (2021)

[2] Cao, Y., Gillespie, D.T., Petzold, L.R.: Efficient step size selection for

the tau-leaping simulation method. The Journal of chemical physics

124(4), 044109 (2006)

[3] Gillespie, D.T.: Exact stochastic simulation of coupled chemical

reactions. The journal of physical chemistry 81(25), 2340–2361

(1977)

[4] Hepp, B., Gupta, A., Khammash, M.: Adaptive hybrid simulations for

multiscale stochastic reaction networks. The Journal of chemical

physics 142(3), 034118 (2015)

Importance of Concrete State Information

MEMORY
(k = 3)

a b

c

d e
f

SIMULATION
(this work)

sinit
c

d

SIMULATION
(previous work)

sinit
c

jump

d

ju
m
p

Importance of Concrete State Information

� Only abstract states → rounding

� Rounding looses progress in all but one dimension

Example: Rounding Problem

Species ON,OFF,X

Initial state (1×ON, 50×X)

Reactions ON −→ OFF+X

OFF −→ ON+X

OFF

ON

#X 48 49 50 51 52 53 54

SIMULATION
(this work)

X does grow. £

48 49 50 51 52

SIMULATION
(previous work)

X does NOT grow. n

Importance of Concrete State Information

� Only abstract states → rounding

� Rounding looses progress in all but one dimension

Example: Rounding Problem

Species ON,OFF,X

Initial state (1×ON, 50×X)

Reactions ON −→ OFF+X

OFF −→ ON+X

OFF

ON

#X 48 49 50 51 52 53 54

SIMULATION
(this work)

X does grow. £

48 49 50 51 52

SIMULATION
(previous work)

X does NOT grow. n

Importance of Concrete State Information

� Only abstract states → rounding

� Rounding looses progress in all but one dimension

Example: Rounding Problem

Species ON,OFF,X

Initial state (1×ON, 50×X)

Reactions ON −→ OFF+X

OFF −→ ON+X

OFF

ON

#X 48 49 50 51 52 53 54

SIMULATION
(this work)

X does grow. £

48 49 50 51 52

SIMULATION
(previous work)

X does NOT grow. n

Importance of Concrete State Information

� Only abstract states → rounding

� Rounding looses progress in all but one dimension

Example: Rounding Problem

Species ON,OFF,X

Initial state (1×ON, 50×X)

Reactions ON −→ OFF+X

OFF −→ ON+X

OFF

ON

#X 48 49 50 51 52 53 54

SIMULATION
(this work)

X does grow. £

48 49 50 51 52

SIMULATION
(previous work)

X does NOT grow. n

Importance of Concrete State Information

� Only abstract states → rounding

� Rounding looses progress in all but one dimension

Example: Rounding Problem

Species ON,OFF,X

Initial state (1×ON, 50×X)

Reactions ON −→ OFF+X

OFF −→ ON+X

OFF

ON

#X 48 49 50 51 52 53 54

SIMULATION
(this work)

X does grow. £

48 49 50 51 52

SIMULATION
(previous work)

X does NOT grow. n

Importance of Concrete State Information

� Only abstract states → rounding

� Rounding looses progress in all but one dimension

Example: Rounding Problem

Species ON,OFF,X

Initial state (1×ON, 50×X)

Reactions ON −→ OFF+X

OFF −→ ON+X

OFF

ON

#X 48 49 50 51 52 53 54

SIMULATION
(this work)

X does grow. £

48 49 50 51 52

SIMULATION
(previous work)

X does NOT grow. n

Lazy Algorithm

Inputs : N (CRN), k (number of segments), c (partitioning parameter),

tend (time horizon), sinit (initial state) and m (number of simulations)

Output: list of m segmental simulations

1 simulations := [];

2 memory := {}; // mapping each abstract state to a list of segments

3 for 1 to m do

4 s := sinit; t := 0; simulation := [(s, t)];

5 while t < tend do

6 a := abstractStatec (s);

7 if |memory(a)| < k then

8 segment := sampleNewSegm(N , a.representative); // sample new segment

9 memory(a).add(segment); // save it for reuse

10 else

11 segment := chooseUniformlyFrom(memory(a)); // reuse old segment

12 end

// apply segment’s relative effects

13 s := s + segment.∆state; t := t + segment.∆time;

14 simulation.add((s, t));

15 end

16 simulations.add(simulation);

17 end

18 return simulations

More Data - Speed

Mod. SSA
SEG k=10 SEG k=100 SEG k=1000

c=2 c=1.5 c=1.3 c=2 c=1.5 c=1.3 c=2 c=1.5 c=1.3

PP 0.014s 70x 70x 70x 70x 70x 23x 28x 23x 12x

VI 0.88s 730x 380x 180x 100x 48x 17x 8.6x 4.8x 2.9x

TS 22s 360x 360x 340x 390x 350x 280x 250x 190x 110x

RP 9.1s 760x 540x 320x 300x 140x 62x 54x 21x 7.4x

Table 1: Average run-time of one SSA simulation and the speedup factor of

segmental simulation when computing 10,000 simulations with different

abstraction parameters.

More Data - Memory

Mod.
SEG k=10 SEG k=100 SEG k=1000

c=2 c=1.5 c=1.3 c=2 c=1.5 c=1.3 c=2 c=1.5 c=1.3

PP 25kb 61kb 130kb 250kb 570kb 1.3mb 2.2mb 4.8mb 11mb

VI 210kb 730kb 2.0mb 1.8mb 4.8mb 13mb 11mb 25mb 53mb

TS 1.2mb 3.0mb 8.7mb 15mb 37mb 85mb 100mb 250mb 550mb

RP 3.8mb 12mb 34mb 43mb 120mb 300mb 310mb 760mb 1.0gb

Table 2: Size of segmental abstraction after 10,000 simulations for different

parameters.

	Appendix

