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Chemical Reaction Networks (CRN):
e Model real-world biochemical systems

e Many applications (e.g. in medicine & molecular programming)

Transient analysis:
e "How does the system evolve?”

e Hard because of complex dynamics, state-space explosion,
stochasticity, stiffness, and multimodality
e Two approaches:

e Direct (numerical)
e Indirect (using many trajectories)

This Work
e Goal: compute many simulations fast

e ldea: using memorization



Species RNA,DNA,V,P
Initial state | (1 x RNA)

End time 200s
Reactions DNA +P
RNA J2OFNA pNA + P
DNA 2922P¥4 DNA + RNA
RNA 22 DNA + RNA
RNA Q25RNA

1.9985-P
P—=10

0.00001125-DNA-P
0.00001125 DNAP, 7

e Evolution governed by

e Gives rise to discrete-space continuous-time Markov chain ( )
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Gillespie’s stochastic simulation algorithm (SSA) [3]

e Sample one reaction at a time
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Gillespie’s stochastic simulation algorithm (SSA) [3]

e Sample one reaction at a time
e May take a long time

t=0.47s [ ——— )
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Segmental Simulation

Precompute k short trajectories (called segments) for each state.
— Simulate by sampling segments instead of single reactions.

Sinit

e much faster!

e Problem: many states — too inefficient
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Abstraction-Based Segmental Simulation

e |dea: Do not treat every state separately!

e States with similar species counts have similar propensities
— their behave similarly

e Population-level abstraction: split state-space into regions (called
abstract states)
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e Population levels grow exponentially
e Choose representative for each abstract state (usually center)



Abstraction-Based Segmental Simulation

Only precompute k segments for each representative.
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Segments end when they leave the abstract state.
— Intuition: " significant change” 6
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Abstraction-Based Segmental Simulation

Only precompute k segments for each representative.
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MEMORY SIMULATION
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To save memory: Work with summaries instead of segments.
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Only precompute k segments for each representative.
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Only precompute k segments for each representative.
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Abstraction-Based Segmental Simulation

Only precompute k segments for each representative.
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Introduced Inaccuracy

There are two error sources:

1. Limited number of memorized segments:

e Cannot faithfully represent actual segment distribution
e Error vanishes for k — oo

2. Using representative’s segments

e Similar species counts — similar propensities — similar segments
e Error gets smaller if we add more population levels



Evaluation - Accuracy

Species RNA,DNA,V,P
Initial state | (1 x RNA)

End time 200s
Reactions DNA +P
RNA 120EY% pNA 4+ P
DNA 292D, BNA + RNA
RNA 1P DNA + RNA
RNA 225RNA 4
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Evaluation - Accuracy
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Evaluation - Performance

Speed-up:

Time Per Simulation (in s)

— ¢=1.3,k=1000
— =15k=10

Number Of Simulations

Time Per Simulation (in s)

14 — ¢=1.5,k=100
12
—— ¢=2k=1000
10
250 500 750 1000 1250 1500 1750

Number Of Simulations

2000

10



Evaluation - Performance

Speed-up:

14 -
20
12
_— €=2,k=100

w w — ¢=15k=10 —— ¢=2,k=1000
£ £10
E E
@ @
& &
¢ g
F F

250 500 750 1000 1250 1500 1750 2000
Number Of Simulations Number Of Simulations

e Depends on model and target accuracy

10



Evaluation - Performance

Speed-up:

14 === SSA ~—— ¢=1.5k=100
—— c=13k=10
2 2 — c=13k=100
— ¢=1.3k=1000
w w — ¢=15k=10 —— ¢=2,k=1000
£ £10
E E
@ @
& &
¢ g
)= F o4

250 500 750 1000 1250 1500 1750 2000
Number Of Simulations Number Of Simulations

e Depends on model and target accuracy

e Accelerates with number of simulations

10



Evaluation - Performance

Speed-up:

14 === SSA ~—— ¢=1.5k=100
—— c=13k=10
2 2 — c=13k=100
— ¢=1.3k=1000
w w — ¢=15k=10 —— ¢=2,k=1000
£ £10
E E
@ @
& &
¢ g
)= F o4

250 500 750 1000 1250 1500 1750 2000
Number Of Simulations Number Of Simulations

e Depends on model and target accuracy
e Accelerates with number of simulations

e Can already be faster than SSA in first simulation

10



Evaluation - Performance
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e Depends on model and target accuracy
o Accelerates with number of simulations
e Can already be faster than SSA in first simulation

e Memorization: trade-off between speed and memory
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Evaluation - Comparison

Oversimplified comparison with other approaches:

Approach Speed-up | Accuracy
SSA [3] 1x | perfect
T-leaping [2] ~bx | very good
Hybrid Simulation [4] ~50x good
Deep Learning! [1] ~100x good
Segmental Simulation? ~200x good

Irequires precomputed data and long training period
2Zsignificant memory requirement

11



e Handle larger models: adaptive memory allocation
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e Handle larger models: adaptive memory allocation

e Formal error bounds
e Segmental simulation as general framework for accelerating

simulations
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e Handle larger models: adaptive memory allocation

e Formal error bounds
e Segmental simulation as general framework for accelerating

simulations

Thank you!
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Lazy Algorithm

1
2
3
4

5
6
7

8
9
10
11
12

13

14
15

17
18

Inputs : A (CRN), k (number of segments), c (partitioning parameter),
tend (time horizon), syt (initial state) and m (number of simulations)
Output: list of m segmental simulations
simulations := [ ];
memory = {}; // mapping each abstract state to a list of segments
for 1 to m do
s = spnit; t:=0; simulation := [(s, t)];
while t < tepq do
a := abstractState.(s);

if [memory(a)| < k then

segment := sampleNewSegm(/\/, a.representative);  // sample new segment

memory(a).add(segment); // save it for reuse
else

segment := chooseUniformlyFrom(memory(a)); // reuse old segment
end

// apply segment’s relative effects
5 := s + segment.Agate; t:= t + segment.Atime;
simulation.add((s, t));
end
simulations.add(simulation);
end
return simulations



More Data - Speed

SEG k=10 SEG k=100 SEG k=1000
c=2[c=15[c=13][c=2]c=15]c=13| c=2]c=15]c=13
PP ||0.014s|| 70x| 70x| 70x|| 70x| 70x| 23x|| 28x| 23x 12x
VI 0.88s || 730x| 380x| 180x|[100x| 48x 17x|| 8.6x| 4.8x| 2.9x
TS 22s ||360x| 360x| 340x|/390x| 350x| 280x|[250x| 190x| 110x
RP 9.1s ||760x| 540x| 320x|[300x| 140x| 62x|| 54x| 21x| 7.4x

Mod.|| SSA

Table 1: Average run-time of one SSA simulation and the speedup factor of
segmental simulation when computing 10,000 simulations with different
abstraction parameters.



More Data - Memory

SEG k=10 SEG k=100 SEG k=1000
=2 [e=LB|=L8| =2 |[=i5 =18 | =2 =15 =13
PP || 25kb| 61kb|130kb|[250kb| 570kb| 1.3mb|| 2.2mb]| 4.8mb| 11mb
VI || 210kb|730kb|2.0mb|[1.8mb| 4.8mb| 13mb|| 11mb| 25mb| 53mb
TS [|1.2mb|3.0mb|8.7mb|| 15mb| 37mb| 85mb||100mb|250mb|550mb
RP [[3.8mb| 12mb| 34mb|| 43mb|120mb|300mb||310mb|760mb| 1.0gb

Mod.

Table 2: Size of segmental abstraction after 10,000 simulations for different

parameters.
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